K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

\(a,\)\(xy+3x+2y=6\)

\(\Rightarrow xy+3x+2y+6=6+6\)

\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)

\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)

\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)

\(TH2\)\(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)

\(TH3\)\(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)

\(TH4\)\(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)

\(TH5\)\(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)

\(TH6\)\(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

\(TH7\)\(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)

\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)

\(TH9\)\(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)

\(TH10\)\(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)

\(TH11\)\(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)

\(TH12\)\(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)

KL...

15 tháng 6 2019

chưa thấy bạn nào làm bài 3 , thì em làm ạ :))

Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .

\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)

Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.

Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)

Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn 

Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)

2 tháng 6 2017

TH1:\(x< 1\)

\(\Rightarrow-x+1-x+4=3x\)

\(\Rightarrow-5x=-5\)

\(\Rightarrow x=1\)(k t/m đk)

TH2:\(1\le x\le4\)

\(\Rightarrow x-1-x+4=3x\)

\(\Rightarrow3x=3\)

\(\Rightarrow x=1\)(t/m đk)

TH3:\(x>4\)

\(\Rightarrow x-1+x-4=3x\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=5\)(t/m đk)

\(\Rightarrow x=1\) hoặc \(x=5\)

17 tháng 4 2017

tìm cận:x-1=0 ->x=1

x-4=0->x=

tìm cận:x 1 4

x-1 - 0 - +

x-4 - - 0 +

TH1:-(x-1)-(x-4)=3x

TH2:(x-1)-(x-4)=3x

TH3:(x-1)+(x-4)=3x

Bạn tự giải ra nha.câu b làm tương tự

27 tháng 12 2015

lớp mấy vậy bạn?vui

27 tháng 12 2015

\(3\left(x-1\right)=3\left(y-2\right);4\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{3};\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{3}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{3}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(x-1\right)+3.\left(y-2\right)-\left(z-3\right)}{2.3+3.3-4}\)

\(=\frac{2x-2+3y-6-z+3}{11}=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{11}\)

\(=\frac{-250-5}{11}=\frac{-255}{11}\)

Đề có sai hông sao số lẽ quá

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

23 tháng 3 2016

Theo đề

=> \(\frac{3x}{4}+5-\frac{2x}{3}+4+\frac{x}{3}-3=\frac{x}{3}+4+\frac{x}{6}+1\)

=> \(\frac{3x}{4}-\frac{2x}{3}+\frac{x}{3}-\frac{x}{3}-\frac{x}{6}=4+1+3-4-5\)

=> \(\frac{9x-8x-2x}{12}=-1\)

=> -1x = -12

=> x = -12 : (-1)

=> x = 12

21 tháng 4 2016

Bài 2 

a) 4^100 = (2^2)^100= 2^200

Mà 2^202 > 2^200 => 4^100 < 2^202                          

b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25       (1)

               17^7 > 16^7= (2^4)^7= 2^28        (2)

                Từ (1) và (2) => 31^5<17^7

29 tháng 12 2015

Câu 1:

Vì \(ab=\frac{a}{b}\Rightarrow a=\frac{a}{b^2}\Rightarrow\frac{a}{a}=b^2\Rightarrow b^2=1\Rightarrow b\epsilon\left\{-1;1\right\}\)

Với b=-1

=> a+(-1)=a/-1

=> a-1=-a

=> a-(-a)=1

=> 2a=1

=> \(a=\frac{1}{2}\)

Với b=1

=> a+1=a/1=a (vô lý)

Vậy a=1/2; b=-1

 

27 tháng 12 2015

x=4y nên x+y=4y+y=5y nên x+y tỉ lệ với x theo tỉ lệ là 5

27 tháng 12 2015

kho

9 tháng 1 2016

tìm x ; y thuộc Z để(x -7).(1+xy)-9= 0 ( lớp 6 nha)