K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Đặt A = \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+....+\frac{1}{2.2.2.2.2.2.2.2.2.2}\)

=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}\)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)

=> 2A - A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}\)

27 tháng 5 2018

Ta có: 2015/501=4+11/501 =>a=4

        501/11=45+6/11  =>b=45

         11/6=3+2/3  =>c=3

       3/2=1+1/2    =>d=1

       2/1=2  =>e=2

Vậy a=4 :b=45 :c=3 :d=1: e=2

Chúc bạn học tốt . Để dễ hiểu bạn hãy tham hảo đề toán giải máytính cầm tay

3 tháng 6 2019

Thấy :            \(\frac{1}{1.1!}=\frac{1}{1}\)

                       \(\frac{1}{2.2!}=\frac{1}{4}\)

                       \(\frac{1}{3.3!}< \frac{1}{1.2.3}\)( Vì 3.3! > 1.2.3 )

                         ...

                       \(\frac{1}{2019.2019!}< \frac{1}{2017.2018.2019}\)( vì 2019.2019! < 2017.2018.2019)

Cộng từng vế có :

  \(\frac{1}{3.3!}+\frac{1}{4.4!}+...+\frac{1}{2019.2019!}< \frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow\frac{1}{1.1!}+\frac{1}{2.2!}+...+\frac{1}{2019.2019!}< \frac{1}{1}+\frac{1}{4}+\frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{3}{2}-\frac{1}{2.2018.2019}\)

Vì \(\frac{1}{2.2018.2019}>0\Rightarrow C< \frac{3}{2}\)

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

26 tháng 7 2015

S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50

S=       0     +       0      +      0      +...+        0

S=  0

4 tháng 6 2020

\(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}+\frac{1}{50.50}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0+0+...+0\)

\(=0\)

9 tháng 9 2018

Có vế kia đâu mà chứng minh bạn

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

6 tháng 8 2016

Cho \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}\)... là A, ta có:

A = \(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

A = \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{2^2}+...\frac{1}{9^2}-\frac{1}{10^2}\)

A = 1 \(-\frac{1}{10^2}\) <1

Vậy: A < 1

6 tháng 8 2016

\(\frac{3}{1^2.2^2}\)+\(\frac{5}{2^2.3^2}\)+...+\(\frac{19}{9^2.10^2}\)

=1-1/4+1/4-1/9+...1/81-1/100

=1-1/100<1

Vậy tổng trên <1