\(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{2.2.2.2.2.2.2....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Đặt A = \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+....+\frac{1}{2.2.2.2.2.2.2.2.2.2}\)

=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}\)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)

=> 2A - A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}\)

27 tháng 5 2018

Ta có: 2015/501=4+11/501 =>a=4

        501/11=45+6/11  =>b=45

         11/6=3+2/3  =>c=3

       3/2=1+1/2    =>d=1

       2/1=2  =>e=2

Vậy a=4 :b=45 :c=3 :d=1: e=2

Chúc bạn học tốt . Để dễ hiểu bạn hãy tham hảo đề toán giải máytính cầm tay

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

7 tháng 2 2018

Ta có:

\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)

..............

\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)

=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)

=>A<\(\frac{3}{4}\)

7 tháng 2 2018

Mình nghĩ bạn cần xem lại :

\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)

Xem lại ..

4 tháng 3 2016

ta có:

 \(\frac{1}{11}\)>\(\frac{10}{20}\)

\(\frac{1}{12}\)>\(\frac{10}{20}\)

\(\frac{1}{13}\)>\(\frac{10}{20}\)

....

\(\frac{1}{19}\)>\(\frac{10}{20}\)

=>E >\(\frac{10}{20}\)

vậy E > \(\frac{1}{2}\)