Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540
<=>1/3(3/5.8+3/8.11+...+3/x(x+3) =101/1540
<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540
<=>1/5-1/x+3=303/1540<=>1/x+3=1/308
<=>x+3=308<=>x=305
Nguồn CHTT, hihi !
\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}=\frac{3^2}{2\cdot11}+\left(\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}\right)\)
\(=\frac{9}{22}+3\left(\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{200}\right)=\frac{9}{22}+3\left(\frac{200}{2200}-\frac{11}{2200}\right)=\frac{9}{22}+3\cdot\frac{189}{2200}\)
\(=3\cdot\left(\frac{3}{22}+\frac{189}{2200}\right)=3\cdot\left(\frac{300}{2200}+\frac{189}{2200}\right)=3\cdot\frac{489}{2200}=\frac{1467}{2200}\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(a^2\)- (\(\frac{3}{5}^2\)) = \(\frac{1}{1}\)-\(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{11}+\frac{1}{11}\)\(-\frac{1}{25}\)
= 1\(-\frac{1}{25}\)
= \(\frac{24}{25}\)
chúc bạn học tốt
a, Ta có: \(\frac{0,8^5}{0,4^6}=\frac{\left(0,4.2\right)^5}{0,4^6}=\frac{0,4^5.2^5}{0,4^6}\) \(=\frac{2^5}{0,4}=80\)
b, Ta có: \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\) \(=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}\left(2^{18}+2^8\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=\frac{2^{18}+2^8}{1+2^{10}}=\frac{2^8\left(2^{10}+1\right)}{2^{10}+1}=2^8\)
c, Ta có: \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}\) \(=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)=\(\frac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^{10}+4^{11}}\)=\(\frac{2^{10}.4^{10}+4^{10}.1}{2^{10}.4^{10}+4^{10}.4}\)=\(\frac{4^{10}\left(2^{10}+1\right)}{4^{10}\left(2^{10}+4\right)}\)=\(\frac{4^{10}.1025}{4^{10}.1028}\)=\(\frac{1025}{1028}\)
= 5/1-2-3+8/2-3-4+11/3-4-5+...+6026/2008-2009-2010
=3.(5/1-6026/2010)
3.2012/1005
=2012/335
a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)
=\(\frac{1}{50}\)
\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)
\(\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=\frac{2004}{10045}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=0\)