Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(L=\left(x-1\right)^2+\left(x+5\right)^2\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+5\right)^2\ge0\end{cases}}\)
\(\Rightarrow L=0\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-5\end{cases}}\left(L\right)\)
Vậy đa thức L vô nghiệm
d) \(M=x^2-5x-6\)
\(\Leftrightarrow M=x^2-6x+x-6\)
\(\Leftrightarrow M=x\left(x-6\right)+\left(x-6\right)\)
\(\Leftrightarrow M=\left(x+1\right)\left(x-6\right)\)
M = 0 \(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
Vậy đa thức M có hai nghiệm là -1 hoặc 6
1.
a, (x-5)2
Ta có x2 luôn \(\ge\) 0 với mọi x, suy ra: (x-5)2 \(\ge\) 0 với mọi x
Nên: (x-5)2 \(\ge\) 0 với mọi x
Suy ra: đa thức này không có nghiệm.
Toàn bộ đều tìm Max :)
D = -x2 + 30x - 10
D = -( x2 - 30x + 225 ) + 215
D = -( x - 15 )2 + 215
-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215
Đẳng thức xảy ra <=> x - 15 = 0 => x = 15
=> MaxD = 215 <=> x = 15
E = -2x2 + 9x + 30
E = -2( x2 - 9/2x + 81/16 ) + 321/8
E = -2( x - 9/4 )2 + 321/8
-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8
Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4
=> MaxE = 321/8 <=> x = 9/4
F = -5x2 - 20x - 4
F = -5( x2 + 4x + 4 ) + 16
F = -5( x + 2 )2 + 16
-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxF = 16 <=> x = -2
d) \(D=-x^2+30x-10\)
\(D=-\left(x^2-30x+10\right)\)
\(D=\left(x^2-30x+225-215\right)\)
\(D=-\left(x-15\right)^2+215\le215\)
Max D = 215 \(\Leftrightarrow x=15\)
e) \(E=-2x^2+9x+30\)
\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)
\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)
Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)
f) \(F=-5x^2-20x-4\)
\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)
\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)
\(F=-5\left(x+2\right)^2-16\le-16\)
Max F = -16 \(\Leftrightarrow x=-2\)
Cho `F(x)=0`
`=>2x^2+5x+2=0`
`=>2x^2+4x+x+2=0`
`=>2x(x+2)+(x+2)=0`
`=>(x+2)(2x+1)=0`
`@TH1: x+2=0=>x=-2`
`@TH2: 2x+1=0=>x=[-1]/2`
Vậy nghiệm của `F(x)` là `x=-2` hoặc `x=[-1]/2`
`2x^2 + 5x + 2`
`= 2x(x+2) + (x+2)`
`=(2x+1)(x+2) =0 `
`=> 2x + 1 = 0`
`x + 2 = 0`
`=> x = -1/2`
`x = -2`