Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp A gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}
a) Trong các số 1, 2, 3, 4, 5, 6, có hai số là hợp số là: 4, 6.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số” là: mặt 4 chấm, mặt 6 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
b) Trong các số 1, 2, 3, 4, 5, 6, có hai số chia 3 dư 1 là: 1, 4.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 1” là: mặt 1 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
c) Trong các số 1, 2, 3, 4, 5, 6, có ba số là ước của 4 là: 1, 2, 4.
Vậy có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 4” là: mặt 1 chấm, mặt 2 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
Trong các số 1, 2, 3, …, 12; có tám số không chia hết cho 3 là: 1, 2, 4, 5, 7, 8, 10, 11.
Vậy có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11 (lấy ra từ tập hợp C = {1; 2; 3; …; 12}).
a) Tập hợp E gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:
E = {10, 11, 12, …, 97, 98, 99}
b) Những số chia hết cho 9 là những số có tổng các chữ số chia hết cho 9.
Trong các số 10, 11, 12, 13, …, 98, 99, có mười số chia hết cho 9 là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99.
Vậy có mười kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là số chia hết cho 9” là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99 (lấy ra từ tập hợp E = {10, 11, 12, …, 97, 98, 99}).
c) Trong các số 10, 11, 12, 13, …, 98, 99, có sáu số là bình phương của một số là: 16, 25, 36, 49, 64, 81.
Vậy có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số” là: 16, 25, 36, 49, 64, 81 (lấy ra từ tập hợp E = {10, 11, 12, …, 97, 98, 99}).
a: E={10;11;...;99}
b: 18;27;36;45;54;63;72;81;90;99
c: 16;25;36;49;64;81
Trong các số 1, 2, 3, 4, 5, 6, có ba số nguyên tố là 2, 3, 5.
Vậy có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm. (Lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
a: D={10;11;...;99}
=>n(D)=99-10+1=90
A={16;25;36;49;64;81}
=>n(A)=6
=>P=6/90=1/15
b: B={15;30;45;60;75;90}
=>P(B)=6/90=1/15
c: C={10;12;15;20;30;40;60}
=>n(C)=7
=>P(C)=7/90
a: n(omega)=6
n(A)=1
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2
Tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:
D = {10; 11; 12; …; 97; 98; 99}
Số phần tử của D là 90
a) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số tự nhiên” là: 16, 25, 36, 49, 64, 81.
Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)
b) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bội của 15” là: 15, 30, 45, 60, 75, 90.
Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)
c) Có tám kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là ước của 120” là: 10, 12, 15, 20, 24, 30, 40, 60.
Vì thế, xác suất của biến cố trên là: \(\dfrac{{8}}{{90}} = \dfrac{4}{45}\)
a: giả sử omega là ko gian mẫu của phép thử T
Nếu \(A\subset\Omega\) thì A được gọi là biến cố của T
c: Giả sử A là biến cố liên quan đến phép thử T và phép thử T có một số hữu hạn kết quả có thể có, đồng khả năng. Khi đó ta gọi tỉ số n(A)/n(Ω) là xác suất của biến cố A