K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2023

`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`

`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`

`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}`    `ĐK: x >= \sqrt{6}/6`

`<=>24x^2-8\sqrt{6}x+4=9x^2+36`

`<=>15x^2-8\sqrt{6}x-32=0`

`<=>x^2-[8\sqrt{6}]/15x-32/15=0`

`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`

`<=>|x-[4\sqrt{6}]/15|=8/5`

`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`

21 tháng 5 2023

Giúp em với ạ

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$

$x_1x_2=-7$

Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$

$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$

$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$

Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:

$x^2-\frac{5}{3}x-\frac{1}{3}=0$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$

$x_1x_2=-7$

Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$

$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$

$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$

Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:

$x^2-\frac{5}{3}x-\frac{1}{3}=0$

3 tháng 6 2019

Có \(a^2+b^2=3-ab\)

Mà \(a^2+b^2\ge2ab\) 

\(\Leftrightarrow3\ge3ab\)

\(\Leftrightarrow1\ge ab\left(1\right)\)

Cũng có:\(a^2+b^2\ge-2ab\)

\(\Leftrightarrow3-ab\ge-2ab\)

\(\Leftrightarrow-3\le ab\left(2\right)\)

Từ (1) và (2) \(1\ge ab\ge-3\)

Lại có :

\(\left(a^2+b^2\right)^2=\left(3-ab\right)^2\)

\(\Leftrightarrow a^4+b^4=9-6ab+a^2b^2-2a^2b^2=9-6ab-a^2b^2\)

\(\Rightarrow P=a^4+b^4-ab=9-7ab-a^2b^2=-\left(a^2b^2+7ab-9\right)\)

\(\Leftrightarrow P=-\left(a^2b^2-7ab+8ab\right)\)

\(\Leftrightarrow P=\left(ab+3\right)\left(-ab-4\right)+21\)

Có \(ab\ge-3\Rightarrow ab+3\ge0\)

\(-ab-4< 0\)

\(\Rightarrow P\le21\)

Max P = 21<=> ab=-3;a=-b<=>\(b=\pm\sqrt{3};a=\pm\sqrt{3}\)tương ứng

3 tháng 6 2019

thằng CTV kia chắc cop nguyên lời giải vào quá =))

Bài 1: 

a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)

8 tháng 11 2021

Bài 4:

\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)

10 tháng 5 2016

= 4,65028154

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Bạn cứ đăng bài lên trên đây để mọi người giải đáp giúp cho.

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

12 tháng 10 2021

Câu 2: 

Ta có: \(\sqrt{x^2-4x+4}=x-1\)

\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)

\(\Leftrightarrow-2x=-3\)

hay \(x=\dfrac{3}{2}\left(tm\right)\)