K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

\(E=5-2x-x^2\)

\(E=-\left(x^2+2.x.1+1\right)+6\)

\(E=-\left(x+1\right)^2+6\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

 \(\Rightarrow-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2+6\le6\forall x\)

\(E=6\Leftrightarrow-\left(x+1\right)^2=x+1=0\Leftrightarrow x=-1\)

Vậy \(E_{max}=6\Leftrightarrow x=-1\)

Tham khảo nhé~

30 tháng 8 2018

vay la mik dung r

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Lời giải:

$E+1=\frac{5-x}{x-2}+1=\frac{3}{x-2}$

Để $E$ nhỏ nhất thì $E+1=\frac{3}{x-2}$ nhỏ nhất.

Điều này xảy ra khi $x-2$ là số âm lớn nhất.

$\Rightarrow x-2=-1$

$\Rightarrow x=1$

Khi đó:

$E_{\min}=\frac{5-1}{1-2}=-4$

12 tháng 8 2018

nhanh hộ em

5 tháng 8 2015

\(A=x^2-6x+10=x^2-2\cdot x\cdot3+3^2+1=\left(x-3\right)^2+1\ge1\)

Vậy GTNN của A bằng 1. Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

\(B=4x-x^2-5=-\left(x^2-2\cdot x\cdot2+2^2+1\right)=-\left(x-2\right)^2+1\le1\)

Vây GTLN của B bằng 1. Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(C=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Vậy GTNN của C bằng 4. Dấu '=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(D=x^2+x+1=x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của D bằng 3/4. Dấu '=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

5 tháng 8 2015

nhìu mà giờ này nữa ai giải? @_@

5 tháng 8 2015

Đăng3 câu 1 cũng đc 

27 tháng 9 2019

a) 

Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)

\(\Leftrightarrow x^3-1+x+1⋮x-1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)

\(\Leftrightarrow x-1+2⋮x-1\)

Mà \(x-1⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)

Vậy \(x\in\left\{-1;0;2;3\right\}\)

27 tháng 9 2019

b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)

\(\Leftrightarrow2x^2-8x+10⋮2x-1\)

\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)

Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)

\(\Leftrightarrow2x-14⋮2x-1\)

\(\Leftrightarrow2x-1-13⋮2x-1\)

Mà \(2x-1⋮2x-1\)

\(\Rightarrow13⋮2x-1\)

\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm 

2 tháng 7 2018

a, \(A=x^4-2x^3+2x^2-2x+3\)

\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)

\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)

\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)

\(=\left(x^2+1\right)\left(x-1\right)^2+2\)

Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)

\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x = 1

Vậy Amin = 2 khi x = 1

b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)

đề sai ko

c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra khi x=1

Vậy Cmin = 5 khi x = 1

2 tháng 7 2018

2/

+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)

Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)

Dấu "=" xảy ra khi x=y=1/2

Vậy Dmax=7/2 khi x=y=1/2

+) Đề sai

+)bài này là tìm min 

 \(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Gmin=11/4 khi x=3//2