Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)
\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)
\(=\dfrac{1}{2\sqrt{2}a}\)
\(=\dfrac{\sqrt{2}}{4a}\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
chịu đấy :v
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)
\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)
\(=\dfrac{-x+1+x^2}{x-3}\)
d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)
\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\sqrt{x^2}\)
\(=4x-2\sqrt{x}+x\)
\(=5x-2\sqrt{2}\)
Bài 1:
\(a,E=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\)
Mà: \(\sqrt{x}>0\\ \Rightarrow\sqrt{x}-1>0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)
Bài 2:
\(a,G=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\left(\sqrt{x}+1\right)\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
a, Rút gọn P
\(\dfrac{3}{\sqrt{x}+3}-\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)
\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{x+3\sqrt{x}-2\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{-\left(\sqrt{x}-2\right)\sqrt{x}+3}\right)\)
\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt{x}+3\right).\left(3-\sqrt{x}\right).\left(x+\sqrt{3}\right).\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right).\left(2-\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)+x-9-\left(2\sqrt{x}-x-4+2\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{9-x+x-9-\left(4\sqrt{x}-x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{-4\sqrt{x}+x+4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt[]{x}-2\right)^2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(\Leftrightarrow3.\dfrac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow\)\(\dfrac{3}{\sqrt{x}-2}\)
a, Với \(x>0;x\ne4;x\ne9\)
\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)
b, Ta có : A = -2 hay
\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)
\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)
\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)
bình phương 2 vế ta có :
\(x=\left(2x+3\right)^2=4x^2+12x+9\)
\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)
\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{4x}{\sqrt{x}-3}\)
\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)
\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
a: ĐKXĐ: x>0; x<>1
b: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
c: Để E=2 thì \(4x^2=2x^2-4x+2\)
\(\Leftrightarrow2x^2+4x-2=0\)
hay \(x\in\left\{-1+\sqrt{2};-1-\sqrt{2}\right\}\)
\(a)E=\left(\dfrac{x-2\sqrt{x}}{x-4}-1\right):\left(\dfrac{4-x}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-1\right):\left(\dfrac{4-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right)\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+2}\right):\dfrac{4-x+x-4-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}+2}:\dfrac{9-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{-2}{\sqrt{x}+2}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{9-x}\\ =\dfrac{-2\left(\sqrt{x}-3\right)}{9-x}=\dfrac{2\left(\sqrt{x}-3\right)}{x-9}\\ =\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{2}{\sqrt{x}+3}\)
\(b)\)E dương
\(\Leftrightarrow E>0\\ \Leftrightarrow\dfrac{2}{\sqrt{x}+3}>0\\ \Leftrightarrow\sqrt{x}+3>0\left(Vì.2>0\right)\\ \Leftrightarrow\sqrt{x}>-3\forall x\in R\\ \Rightarrow x\ge0\)
Kết hợp đk
\(x\ge0;x\ne4;x\ne9\)
Vậy \(x\ge0;x\ne4;x\ne9\) thì E dương