Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)m^2-\left(x+y-3\right)=0voimoi..m\Rightarrow\int^{x=1}_{y=2}\Leftrightarrow A\left(1;2\right)\)
Xét (d):\(y=\left(m^2-1\right)x-m^2+3\)
\(\Leftrightarrow\left(m^2-1\right)\left(x-1\right)+\left(2-y\right)=0\)
Phương trình trên đúng với mọi m khi
\(\left\{{}\begin{matrix}x-1=0\\2-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy điểm cố định đó là A(1;2)
a/ Gọi điểm cố định là N(x0;y0)
Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên :
\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)
Vì đths luôn đi qua N với mọi x,y nên :
\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)
Vậy điểm cố định là \(N\left(0;3\right)\)
b,c tương tự
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )
\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m
\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)
Vậy điểm cố định là ( 0 ; 3 )
Lời giải:
Xét (d1)
\(y=4mx-(m+5)\)
\(\Leftrightarrow m(4x-1)-(5+y)=0\)
Để pt đúng với mọi $m$ thì:
\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)
Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)
Xét (d2)
\(y=(3m^2+1)x+(m^2-9)\)
\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)
Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)
Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)
Như vậy ta có đpcm.
\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)
\(y=\left(m^2-1\right)x-m^2+3=m^2x-x-m^2+3=m^2\left(x-1\right)-x+3\)
\(\Rightarrow m^2\left(x-1\right)-\left(x-3+y\right)=0\). Để đường thẳng luôn đi qua 1 điểm cố định với mọi m thì \(\int^{x-1=0}_{x-3+y=0}\Leftrightarrow\int^{x=1}_{y=2}\)