Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Phương trình tổng quát của đường thẳng Δ đi qua điểm M(-1;2) và có hệ số góc k = 3 là: y = 3(x + 1) + 2 ⇔ 3x - y + 5 = 0
a) Phương trình đường thẳng Δ đi qua M(–5; –8) và có hệ số góc k = –3 là:
y = –3.(x + 5) – 8 ⇔ 3x + y + 23 = 0.
b) Ta có: A(2; 1), B(–4; 5) ⇒
Δ đi qua hai điểm A(2; 1) và B(–4; 5)
⇒ Δ nhận là một vtcp
⇒ Δ nhận là một vtpt.
Phương trình tổng quát của đường thẳng Δ là:
(Δ) : 4(x – 2) + 6(y -1) = 0
Hay 4x + 6y – 14 = 0 ⇔ 2x + 3y – 7 = 0.
Đáp án: A
Δ: x - 2y + 3 = 0 có
Ta thấy: (4;-2).(1;-2) = 4.1 + (-2).(-2) = 4 + 4 = 8 ≠ 0
Nên (4;-2) không phải là vecto chỉ phương của Δ
Cho đường thẳng Δ có phương trình tham số:
a) Vectơ chỉ phương của đường thẳng là:
a = (1; -2) b = (2; 1) c = (1; 1) d = (-1; -2)
b) Điểm nào trong các điểm sau thuộc Δ:
A. (1; 3) B. (1; -5) C. (0; 1) D. (2; 1)
c) Với t = 4 ta có điểm nào sau đây thuộc Δ:
A. (6; 7) B. (-7; 6) C. (6; -7) D. (6; 9)
Đường tròn (C) tâm I(1;2) bán kính \(R=\sqrt{5}\)
a.
\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt
Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)
b.
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
Áp dụng định lý Pitago:
\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)
Phương trình \(\Delta\) qua M có dạng:
\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)
\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)
\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)
a: Vì (d) vuông góc với (Δ) nên -a=-1
hay a=1
Vậy: (d): y=x+b
Thay x=1 và y=-5 vào (d), ta được: b+1=-5
hay b=-6
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}5x^2+4x+3=-3x+3\\y=-3x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+7\right)=0\\y=-3x+3\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(0;3\right);\left(-\dfrac{7}{5};\dfrac{36}{5}\right)\right\}\)
a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
\(\Leftrightarrow2x+2+2x-1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow4x+1-2\sqrt{\left(2x+2\right)\left(2x-1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{4x^2+2x-2}=-x^2+4x+1\)( ĐK: \(2-\sqrt{5}\le x\le2+\sqrt{5}\))
\(\Leftrightarrow4\left(4x^2+2x-2\right)=\left(x^2-4x-1\right)^2\)
\(\Leftrightarrow16x^2+8x-8=x^4-8x^3+14x^2+8x+1\)
\(\Leftrightarrow x^4-8x^3-2x^2+9=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2-9x^2+9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2-9x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(chon\right)\\x=8,22...\left(loai\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=-1\)
b_em ko chắc đâu, chưa từng làm dạng toán chứa tham số-_-
ĐK: \(x^2\ge-m\) ( ko chắc)
PT<=> \(\left(x-3\right)\sqrt{x^2+m}=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left[x+3-\sqrt{x^2+m}\right]=0\)
Thấy ngay x = 3 thỏa mãn. Xét cái ngoặc to
\(\Leftrightarrow x+3=\sqrt{x^2+m}\left(\text{thêm đk }x\ge-3\right)\Leftrightarrow6x+9=m\Leftrightarrow x=\frac{\left(m-9\right)}{6}\)
Do \(x\ge-3\text{nên }m\ge-9\)
Vậy...
Chọn B.
Phương trình đường thẳng Δđi qua điểm M(2;-5) và có hệ số góc k = -2 là:
y = -2(x - 2) - 5 ⇔ y = -2x - 1
CHỌN C vì :
Hệ số góc của đường thẳng d có vectơ chỉ phương u→ = (-1; \(\sqrt{3}\)) là:
\(K=\dfrac{U_2}{U_1}=\dfrac{\sqrt{3}}{-1}=-\sqrt{3}\)
\(=>C.K=-\sqrt{3}\)