\(\frac{4}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

ap dung sin2a+cos2a=1 =>4cos2a -6sin2a=4 -4sin2a-6sin2a=4-10sin2a=4-10.1/25=3,6

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)

16 tháng 5 2017

\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)

PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.

28 tháng 9 2019

\(\tan\alpha=\frac{\sin\alpha}{\cos a}=\frac{3}{4}\)

\(\Rightarrow\sin\alpha=\frac{3}{4}.\cos\alpha\)

Ta có : \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\left(\frac{3}{4}.\cos\alpha\right)^2+\cos^2\alpha=1\)

\(\Rightarrow\frac{25}{16}.\cos^2\alpha=1\)

\(\Rightarrow\cos\alpha=\sqrt{\frac{16}{25}}=\frac{4}{5}\)

\(\Rightarrow\sin\alpha=\sqrt{1-\cos^2\alpha}=\frac{3}{5}\)

4 tháng 10 2018

\(\tan\alpha=\frac{\sqrt{2}}{5}\approx0,28\)

bn bấm máy tính Shift và nút tan sẽ ra như thế này nek:

\(\tan^{-1}\left(0,28\right)\approx15^o39^,\)

13 tháng 4 2020

1) \(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)

\(\tan^2\alpha+\cot^2\alpha+2\tan\alpha.\cot\alpha-\tan^2\alpha+2\tan\alpha.\cot\alpha-\cot^2\alpha\)

\(4\tan\alpha.\cot\alpha\)

\(4.\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=4\)

2) \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)

\(\frac{4-2-\sqrt{2+\sqrt{2}}}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)

\(\frac{1}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

Mặt khác: \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow2+\sqrt{2+\sqrt{2}}< 2+\sqrt{4}=4\)

=> \(2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 2+\sqrt{4}=4\)

=> \(\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

=> \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}>\frac{1}{4}\)

1 tháng 9 2019

help me please