K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

+) Xét tam giác EIA vuông tại I nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét hai tam giác ABH và ∆EAI có:

AB = AE ( vì ABDE là hình vuông)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Suy ra: ∆ABH = ∆ EAI ( cạnh huyền – góc nhọn)

⇒ AH = EI ( hai cạnh tương ứng)

+) Tương tự hai tam giác vuông ACH và GAJ bằng nhau.

⇒ AH = GJ.

Suy ra EI = AH = GJ.

+) Xét ΔEKI và ΔGKJ có:

EI = GJ ( chứng minh trên)

∠(IKE) = ∠(JKG) (đối đỉnh).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

do đó ΔEKI = ΔGKJ ( cgv – gn)

suy ra: KE = KG

Từ đó ta có K trung điểm của EG. Vậy AK là trung tuyến của tam giác AEG.

12 tháng 12 2017

Bài này vẽ hình hơi dài dòng mà em ko bt vẽ hình ở H24 HOC24

Thôi thì lời giải của em ở trang 98->99

Hình bs.36

6 tháng 12 2018

Theo a) ΔEKI = ΔGKJ nên KI = KJ.

Mặt khác, theo giả thiết K là trung điểm của AL nên KA = KL.

Suy ra: KA – KI = KL – KJ hay IA= JL.

Ta có: ∆ACH= ∆ GAJ ( theo a) nên HC = AJ;

∆ABH = ∆ EAI nên BH = AI.

+) Suy ra:

AL = AJ + JL = AJ + AI = HC + HB = BC

11 tháng 1 2019

a, BE=CD và BE vuông góc với CD.

b, KL là trung điểm cuarDE và AK=1/2BC.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔAGE và ΔCDE có 

EA=EC

\(\widehat{AEG}=\widehat{CED}\)

EG=ED

Do đó: ΔAGE=ΔCDE

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác ABKH có

I là trung điểm chung của AK và BH

=>ABKH là hbh

=>BK//AH

=>BK vuông góc BC

c: KB=AH

AH<AB

=>KB<AB

d: Xét ΔBCK có CH/CB=CM/CK

nên HM//BK

=>HM vuông góc BC

mà AH vuông góc BC

nên A,H,M thẳng hàng

28 tháng 11 2016

A B C H K D I

Xét tam giác ABH và tam giác KHC ta có

AH=HK (gt)

BH=HC ( H là trung điểm BC)

góc AHB=góc KHC (=90)

-> tam giác ABH= tam giác KHC (c-g-c)

b)

Xét tam giác ABH và tam giác AHC ta có

AH=AH (cạnh chung)

BH=HC ( H là trung điểm BC)

AB=AC (ggt)

-> tam giác ABH= tam giác AHC (c-c-c)

-> góc AHB= góc AHC (2 góc tương ứng)

mà góc AHB + góc AHC =180 ( 2 góc kề bù)

nên góc AHB + góc ABH=180

->2 góc AHB=180

-> góc AHB =180 :2 =90

=> AH vuông góc BC tại H

c) Xét tam giác BDH và tam giác HAB ta có

BH=BH ( cạnh chung)

góc DBH= góc BHA (=90)

góc DHB= goc1HBA ( 2 góc sole trong và AB//DH)

-> tam giác BDH=tam giác HAB ( g-c-g)

-> DH=AB ( 2 cạnh tương ứng)

d) ta có DH=AB (cmt)

             KC=AB ( tam giác AHB= tam giác KHC)

-> DH = KC

ta có góc BAH = góc HKC ( tam giác AHB= tam giác KHC)

mà 2 góc nằm ở vị trí sole trong 

nên AB//CK

mặt khác AB//DH (gt)

do đó CK//DH

Xét tam giác DHI và tam giác CKI ta có

HI=IK (I là trung điểm HK)

DH=Ck (cmt)

góc IHD=góc IKC (2 góc sole trong và DH//CK)

-> tam giác DHI= tam giác CKI (c-g-c)

-> góc DHI = góc CIK (2 góc tương ứng

mà góc CIK + góc HIC =180 ( 2 góc kề bù)

nên góc DHI+ góc HIC =180

-> góc DIC =180

-> D,I,C thẳng hàng

10 tháng 5 2017

kho qua

mik chưa học qua