K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Xét tam giác ALB và ∆BCD có:

AL = BC ( chứng minh b)

AB = BD ( vì ABDE là hình vuông)

∠(BAL) = 90º + ∠(EAL) = 90 + ∠(ABC) = ∠(DBC) .

Suy ra: ∆ALB = ∆BCD ( c.g.c)

Suy ra ∠(ALB) = ∠(BCD) .

Mặt khác ta có ∠(ALB) + ∠(LBH) = 90º nên ∠(BCD) + ∠(LBH) = 90º.

Suy ra LB ⊥ CD, tức CD là một đường cao của tam giác LBC.

12 tháng 12 2017

Bài này vẽ hình hơi dài dòng mà em ko bt vẽ hình ở H24 HOC24

Thôi thì lời giải của em ở trang 98->99

Hình bs.36

1 tháng 5 2019

a. Gọi AM, BN, CP lần lượt là các đường trung tuyến của ΔABC. Các đường trung tuyến cắt nhau tại G.

Ta có: AG = GD (gt)

AG = 2GM (tính chất đường trung tuyến)

Suy ra: GD = 2GM

Mà GD = GM + MD ⇒ GM = MD

Xét ΔBMD và ΔCMG, ta có:

BM = CM (gt)

∠(BMD) = ∠(CMG) (đối đỉnh)

MD = GM (chứng minh trên)

Suy ra: ΔBMD = ΔCMG (c.g.c)

⇒ BD = CG (hai cạnh tương ứng)

Mặt khác: CG = 2/3 CP (tính chất đường trung tuyến)

Suy ra: BD = 2/3 CP (1)

Lại có: BG = 2/3 BN (tính chất đường trung tuyến) (2)

Và AG = 2/3 AM (tính chất đường trung tuyến)

Suy ra: GD = 2/3 AM (3)

Từ (1), (2) và (3) suy ra các cạnh của tam giác BGD bằng 2/3 các đường trung tuyến của tam giác ABC.

b. Ta có: GM = MD (chứng minh trên)

Suy ra BM là đường trung tuyến của tam giác BGD.

Suy ra: BM = 1/2 BC (4)

Kẻ đường trung tuyến GE và DF của tam giác BGD, ta có:

FG = 1/2 BG (tính chất đường trung tuyến)

GN = 1/2 GB (tính chất đường trung tuyến)

Suy ra: FG = GN

Xét ΔDFG và ΔANG, ta có:

AG = GD (gt)

∠(DGF) = ∠(AGN) (đối đỉnh)

GF = GN (chứng minh trên)

Suy ra: ΔDFG = ΔANG (c.g.c) ⇒ DF = AN

Mà AN = 1/2 AC (gt)

Suy ra: DF = 1/2 AC (5)

Mặt khác: BD = CG (chứng minh trên)

ED = 1/2 BD (vì E là trung điểm BD)

GP = 1/2 CG (tính chất đường trung tuyến)

Suy ra: ED = GP

Lại có: ΔBMD = ΔCMG (chứng minh trên)

⇒ ∠(BDM) = ∠(CGM) hay ∠(EDG) = ∠(CGM)

(CGM) = (PGA) (đối đỉnh)

Suy ra: ∠(EDG) = ∠(PGA)

AG = GD (gt)

Suy ra: ΔPGA = ΔEDG (c.g.c) ⇒ GE = AP mà AP = 1/2 AB (gt)

Do đó: GE = 1/2 AB(6)

Từ (4), (5) và (6) suy ra các đường trung tuyến của ΔBGD bằng một nửa cạnh của ΔABC.

1 tháng 5 2019

ko cần vẽ hình đâu nhé giải thôi

1 tháng 5 2019

a. Xét ΔAMB và ΔAMC, ta có:

AM = AC (gt)

BM = CM (gt)

AM cạnh chung

Suy ra: ΔAMB = ΔAMC (c.c.c)

Suy ra: ∠(AMB) = ∠(AMC) (1)

Lại có: ∠(AMB) + ∠(AMC) = 180o (hai góc kề bù) (2)

Từ (1) và (2) suy ra: ∠(AMB) = ∠(AMC) = 90o

Vậy AM ⊥ BC.

b. Tam giác AMB có ∠(AMB) = 90o

Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:

AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162

= 1156 - 256 = 900

Suy ra: AM = 30 (cm).

21 tháng 11 2017

nh 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

    DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

21 tháng 11 2017

Xem hình 98)

∆ABC và ∆ABD có: 

ˆA1A1^=ˆA2A2^(gt)

AB là cạnh chung.

ˆB1B1^=ˆB2B2^(gt)

Nên ∆ABC=∆ABD(g.c.g)

Xem hình 99)

Ta có:

ˆB1B1^+ˆB2B2^=180(Hai góc kề bù).

ˆC1C1^+ ˆC2C2^=180(Hai góc kề bù)

Mà ˆB2B2^=ˆC2C2^(gt)

Nên ˆB1B1^=ˆC1C1^

* ∆ABD và ∆ACE có:

ˆB1B1^=ˆC1C1^(cmt)

BD=EC(gt)

ˆDD^ = ˆEE^(gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

ˆDD^=ˆEE^(gt)

ˆC2C2^=ˆB2B2^(gt)

DC=EB

Nên ∆ADC=∆AEB(g.c.g)

9 tháng 10 2019

TL : 

a) Vẽ thêm các tia đối của các tia Dm, Cp, Bq và An.

Vẽ thêm các đường phân giác Ds và Ar của góc ∠D và ∠A.

Khi đó chứng minh được Cp song song với Ds.

Tương tự chứng minh được Ar song song với Dm.

Từ đó suy ra được: An // Cp và Dm // Bq.

b) Sử dụng tính chất tia phân giác của hai góc bù nhau có được Ds, Dm vuông góc với nhau.

Từ đó suy ra được: An vuông góc với Bq.

Hok tốt

9 tháng 10 2019

Giỏi thế

24 tháng 12 2016

hay thật

 

24 tháng 12 2016

Merry Christmas, too!

13 tháng 5 2019

TOÁN LỚP 8 NHA

13 tháng 5 2019

chứng minh rằng cái j hả bn

31 tháng 8 2020

Giải sách bài tập Toán 7 | Giải sbt Toán 7         Hình bs 7

31 tháng 8 2020

                                                     Bài giải

a b c d

Bạn ơi hình bs là gì ? Mà lấy đâu ra \(\widehat{C_1}\text{ ; }\widehat{D_2}\)

5 tháng 8 2017

Cho tam giác ABC.Vẽ về phía ngoài tam giác các hình vuông ABDE và ACFG có tâm theo thứ tự là M,N.Gọi I,K theo thứ tự là trung điểm của EG,BC. - Hình học - Diễn đàn Toán học