Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m > n ⇒ m + (-n) > n + (-n)
⇒ m – n > n – n ⇒ m – n > 0
<=> \(\frac{m^2y+n^2x}{xy}>=\left(\frac{m^2+2mn+n^2}{x+y}\right)\)
<=> \(\left(m^2y+n^2x\right).\left(x+y\right)>=\left(m^2+2mn+n^2\right).xy\)(vì x,y,m^2,n^2 >= 0)
<=> m2xy + n2xy + m2y2 + n2x2 >= m2xy + n2xy + 2mnxy
<=> n2x2 + m2y2 >= 2mnxy (luôn đúng) (bất đẳng thức cosi).
Vậy ....
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
a) \(a>b\Leftrightarrow a-b>b-b=0\)
b) \(a+b>c\Leftrightarrow a+b-b>c-b\Leftrightarrow a>c-b\)
c)
Cm: \(a^2-a+3\ge a+2\)
\(\Rightarrow a^2-a+3-a-2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\) *đúng*
Ta có: m – n > 0 ⇒ m – n + n > 0 + n ⇒ m > n