\(a.\sqrt{27x^2} b.\sqrt{8xy^2 } c.\sqrt{25x^3}d.\sqrt{48xy^4}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

a) \(\sqrt{27x^2}\)

\(=\sqrt{3^2\cdot3x^2}\)

\(=\left|3x\right|\sqrt{3}\)

\(=3\left|x\right|\sqrt{3}\)

b) \(\sqrt{8xy^2}\)

\(=\sqrt{2^2\cdot2\cdot x\cdot y^2}\)

\(=\left|2y\right|\sqrt{2x}\)

\(=2\left|y\right|\sqrt{2x}\)

c) \(\sqrt{25x^3}\)

\(=\sqrt{5^2\cdot x^2\cdot x}\)

\(=\left|5x\right|\sqrt{x}\)

\(=5\left|x\right|\sqrt{x}\)

d) \(\sqrt{48xy^4}\)

\(=\sqrt{4^2\cdot3x\cdot\left(y^2\right)^2}\)

\(=\left|4y^2\right|\sqrt{3x}\)

\(=4y^2\sqrt{3x}\)

`a, sqrt(27x^2b) = sqrt(3^2. 3.x^2b) = 3|x|sqrt(3b)`.

`b, sqrt(8xy^2) =sqrt(2^2.2xy^2)= 2|y|sqrt(2x)`

`c, sqrt(25x^3d) = sqrt(5^2.x^2.x.d) = 5|x|sqrt(xd)`.

`d, sqrt(48xy^4) = sqrt(4^2.3 . xy^4) = 4y^2sqrt(3x)`.

17 tháng 8 2020

a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)

b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)

1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)

2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)

3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)

14 tháng 6 2017

a )\(x\sqrt{7}\)

b )\(-2y\sqrt{2}\)

c )\(5x\sqrt{x}\)

d)\(4y^2\sqrt{3}\)

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)

27 tháng 6 2019
https://i.imgur.com/Y6J0Epp.jpg
27 tháng 6 2019

cảm ơn ạ

13 tháng 7 2016

a/ \(0,1\sqrt{2.10000=0,1\sqrt{ }2.100^{ }2=0,1\cdot100\sqrt{ }2=10\sqrt{ }2}\) 

b/ \(-0,05\sqrt{28800}=-0,05\sqrt{288\cdot100=-0,05\cdot10\sqrt{ }288=6\sqrt{ }2}\) 

c/\(\sqrt{7\cdot63}a^2=\sqrt{7\cdot9\cdot7}a^2=21a^2\) 

 

13 tháng 7 2016

\(\sqrt{72a^{ }2b\sqrt{ }4=\sqrt{ }6\cdot9\left|\right|ab^{ }2=-3\sqrt{ }6ab^{ }2}\)

NV
8 tháng 3 2020

a/ \(D\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\Rightarrow D=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

b/\(2E=\sqrt[3]{8\sqrt{5}-16}+\sqrt[3]{8\sqrt{5}+16}\)

\(=\sqrt[3]{5\sqrt{5}-3.5.1+3\sqrt{5}-1}+\sqrt[3]{5\sqrt{5}+3.5.1+3\sqrt{5}+1}\)

\(=\sqrt[3]{\left(\sqrt{5}-1\right)^3}+\sqrt[3]{\left(\sqrt{5}+1\right)^3}=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(\Rightarrow E=\sqrt{5}\)

NV
8 tháng 3 2020

c/

\(F=\sqrt[3]{182+25\sqrt{53}}+\sqrt[3]{182-25\sqrt{53}}\)

\(F^3=364+3F\sqrt[3]{182^2-33125}=364-3F\)

\(\Leftrightarrow F^3+3F-364=0\)

\(\Leftrightarrow\left(F-7\right)\left(F^2+7F+52\right)=0\)

\(\Rightarrow F=7\)

Bài 2:

a/ \(C=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right)\left(\sqrt{4}+\sqrt{3}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}\)

\(=\sqrt{4}-1=2-1=1\)