K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(a,4x^2-y^2+2y-1\)

\(=4x^2-\left(y^2-2y+1\right)\)

\(=\left(2x\right)^2-\left(y-1\right)^2\)

\(=\left(2x-y+1\right)\left(2x+y-1\right)\)

20 tháng 6 2017

a) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)

\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)

\(=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

d) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=\left(x^2-3\right)\left(4x^2+9\right)\)

\(=4x^4+9x^2-12x^2-27\)

\(=4x^4-3x^2-27\)

f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=\left(2x\right)^3-1^3\)

\(=8x^3-1\)

20 tháng 6 2017

\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)

19 tháng 6 2017

Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .

Tương tự SAID=SDNC=SBMC=SABK=Shv9  và SIKMN=Shv9 

Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv

Vậy diện tích phần còn lại bằng 49 Shv

Suy ra diện tích hình vuông ABCD bằng 54  diện tích phần còn lại.

k mình nha

26 tháng 11 2018

20 tháng 6 2018

Những hằng đẳng thức đáng nhớ

20 tháng 6 2018

Giải:

5) \(-x^2+x-\dfrac{1}{2}\)

\(=-x^2+x-\dfrac{1}{4}+\dfrac{3}{4}\)

\(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

6) \(-\dfrac{1}{4}x^2+x-2\)

\(=-\dfrac{1}{4}x^2+x-1-1\)

\(=-\left(\dfrac{1}{4}x^2-x+1\right)-1\)

\(=-\left(\dfrac{1}{2}x-1\right)^2-1\le-1\)

\(\Leftrightarrow\dfrac{1}{2}x-1=0\Leftrightarrow x=2\)

Vậy ...

7) \(-\dfrac{1}{9}x^2-\dfrac{1}{3}x+1\)

\(=-\dfrac{1}{9}x^2-\dfrac{1}{3}x-\dfrac{1}{4}+\dfrac{5}{4}\)

\(=-\left(\dfrac{1}{9}x^2+\dfrac{1}{3}x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)

\(=-\left(\dfrac{1}{3}x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy ...

8) \(-2x^2+2xy-2y^2+2x+2y-8\)

\(=-x^2+2xy-y^2+2x-x^2+2y-y^2-1-1-6\)

\(=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-6\)

\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2-6\le-6\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

Vậy ...

29 tháng 6 2023

\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)

\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)

\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)

\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)

1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy

2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3

=6x^2y

3: =(x+y-x+y)^2=(2y)^2=4y^2

4: =(2x+3-2x-5)^2=(-2)^2=4

5: =18^8-18^8+1=1

11 tháng 8 2023

`a,-x^3/8 + 3/(4x^2) - 3/(2x) +1`

`=-(x^3/8 - 3/(4x^2) + 3/(2x) - 1)`

`=-(x/2 - 1)^3`

`b,x^6 - 3/(2x^{4} y) + 3/(4x^{2}y^{2}) - 1/(8y^{3})`

`=(x^3 - 1/(2y))^{3}`