\(C\sin\left(x+\alpha\right)\) :

a)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

NV
18 tháng 8 2020

7.

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow8cosx=\frac{\sqrt{3}cosx+sinx}{sinx.cosx}\)

\(\Leftrightarrow8cosx.sinx.cosx=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow4sin2x.cosx=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2sin3x+2sinx=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2sin3x=\sqrt{3}cosx-sinx\)

\(\Leftrightarrow sin3x=\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx\)

\(\Leftrightarrow sin\left(-3x\right)=sin\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x=x-\frac{\pi}{3}+k2\pi\\-3x=\frac{4\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{2\pi}{3}+k\pi\end{matrix}\right.\)

NV
18 tháng 8 2020

5.

\(sin\left(2x+\frac{\pi}{2}+2\pi\right)-2cos\left(x+\frac{\pi}{2}-4\pi\right)=1+2sinx\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)-2cos\left(x+\frac{\pi}{2}\right)=1+2sinx\)

\(\Leftrightarrow cos2x+2sinx=1+2sinx\)

\(\Leftrightarrow cos2x=1\)

\(\Rightarrow x=k\pi\)

6.

\(sin^22x-cos^28x=sin\left(10x+\frac{\pi}{2}+8\pi\right)\)

\(\Leftrightarrow\frac{1-cos4x}{2}-\frac{1+cos16x}{2}=sin\left(10x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow-\left(cos4x+cos16x\right)=2cos10x\)

\(\Leftrightarrow-2cos10x.cos6x=2cos10x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos10x=0\\cos6x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}10x=\frac{\pi}{2}+k\pi\\6x=\pi+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{6}+\frac{k\pi}{3}\end{matrix}\right.\)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
25 tháng 6 2019

Câu 1:

\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)

\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)

Câu 2:

\(\Leftrightarrow1-cos6x=1+cos2x\)

\(\Leftrightarrow-cos6x=cos2x\)

\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 6 2019

Câu 3:

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)

\(\Leftrightarrow cos2x+cos2x=1\)

\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Câu 4:

\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)

\(\Leftrightarrow-cosx+sinx=1+sinx\)

\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)

Câu 5:

Giống câu 3, chắc bạn ghi nhầm đề

NV
12 tháng 10 2020

7.

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow cos2x\ne0\)

Phương trình tương đương:

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)

\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)

\(\Leftrightarrow2cos^44x-cos^24x-1=0\)

\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)

\(\Leftrightarrow cos^24x-1=0\)

\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)

\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

NV
12 tháng 10 2020

1.

\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)

\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)

\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t+4=0\)

\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)