\(4-2\sqrt{3}\) b,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

a) \(4-2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

b)\(7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

NV
4 tháng 3 2019

a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)

\(\Leftrightarrow\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

c/ \(3x^2-6x+3-2=0\)

\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)

d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)

\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)

4 tháng 3 2019

Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT

1: \(=\dfrac{1}{a+b}\cdot a^2\cdot\left|a-b\right|=\dfrac{a^2\left|a-b\right|}{a+b}\)

2: \(=\sqrt{9}\cdot\sqrt{a^2}\cdot\sqrt{\left(b-2\right)^2}=9\cdot\left|a\right|\cdot\left|b-2\right|\)

3: \(=\sqrt{13a\cdot\dfrac{52}{a}}=\sqrt{52\cdot13}=2\sqrt{13}\cdot\sqrt{13}=26\)

4: \(=4x-2\sqrt{2}-a\)(vì a>1>0)

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

14 tháng 7 2016

giup minh voi        

14 tháng 7 2016

1) có nghĩa ↔5-2x >=0 ↔x<=5 phần 2                                                                                                                                            2)có nghĩa ↔(2-x)(2+x)>=0↔x<=2 hoặc x>=-2                                                                                                                              3) có nghĩa ↔(x-1)(x+1)>=0↔x>=1 hoặc x>=-1                                                                                                                            4)có nghĩa ↔4-3x >0↔x<4 phần 3                                                                                                                                                5)có nghĩa ↔1-2x>=0 và x>=1 hoặc x>=-1↔1<=x<=1 phần 2                                                                                                      6) có nghĩa ↔1-3x>0↔x<1 phần 3

a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{-20}{18}=\dfrac{-10}{9}\)

b: \(=\dfrac{7+10\sqrt{7}+25+7-10\sqrt{7}+25}{-18}\)

\(=\dfrac{64}{-18}=\dfrac{-32}{9}\)

2 tháng 3 2017

P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Vậy a+b+c=14

2 tháng 3 2017

14

Bài 2: 

a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)

\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)

b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)