Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(CH_4+2O_2\underrightarrow{t^o}CO_2+2H_2O\)
\(2C_2H_2+5O_2\underrightarrow{t^o}4CO_2+2H_2O\)
Ta có: \(n_{CH_4}+n_{C_2H_2}=\dfrac{0,028}{22,4}=0,00125\left(mol\right)\left(1\right)\)
Theo PT: \(n_{O_2}=2n_{CH_4}+\dfrac{5}{2}n_{C_2H_2}=\dfrac{0,0672}{22,4}=0,003\left(mol\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}n_{CH_4}=0,00025\left(mol\right)\\n_{C_2H_2}=0,001\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%V_{CH_4}=\dfrac{0,00025.22,4}{0,028}.100\%=20\%\\\%V_{C_2H_2}=80\%\end{matrix}\right.\)
b, Theo PT: \(n_{CO_2}=n_{CH_4}+2n_{C_2H_2}=0,00225\left(mol\right)\)
\(\Rightarrow V_{CO_2}=0,00225.22,4=0,0504\left(l\right)\)
\(a)\\ CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ 2C_2H_2 + 5O_2 \xrightarrow{t^o} 4CO_2 + 2H_2O\\ b)\\ V_{CH_4} =a (lít) ; V_{C_2H_2} = b(lít)\\ \Rightarrow a + b = 7,84(1)\\ V_{O_2} = 2a + \dfrac{5}{2}b = 21,28(2)\\ (1)(2) \Rightarrow a = -3,36 < 0 ; b = 11,2\)
(Sai đề)
CH4+2O2-to>CO2+2H2O
x------2x---------x
C2H2+\(\dfrac{5}{2}\)O2-to>2CO2+H2O
y----------\(\dfrac{5}{2}\)y--------2y
Ta có :
\(\left\{{}\begin{matrix}x+y=\dfrac{6,72}{22,4}\\x+2y=\dfrac{8,96}{22,4}\end{matrix}\right.\)
=>x=0,2 mol, y=0,1 mol
=>%VCH4=\(\dfrac{0,2.22,4}{6,72}\).100=66,67%
=>%VC2H2=100-66,67=33,33%
b)
VO2=(2.0,2+\(\dfrac{5}{2}\).0,1).22,4=14,56l
Giả sử các khí được đo ở điều kiện sao cho 1 mol khí chiếm thể tích 1 lít
Gọi số mol CH4, C2H2 là a, b (mol)
=> a + b = 56 (1)
PTHH: CH4 + 2O2 --to--> CO2 + 2H2O
a--->2a
2C2H2 + 5O2 --to--> 4CO2 + 2H2O
b------>2,5b
=> 2a + 2,5b = 133,4 (2)
(1)(2) => a = 13,2 (mol); b = 42,8 (mol)
=> \(\left\{{}\begin{matrix}\%V_{CH_4}=\dfrac{13,2}{56}.100\%=23,57\%\\\%V_{C_2H_2}=\dfrac{42,8}{56}.100\%=76,43\%\end{matrix}\right.\)
Theo gt ta có: $n_{O_2}=0,6(mol);n_{hh}=0,25(mol)$
a, $CH_4+2O_2\rightarrow CO_2+2H_2O$
$C_2H_4+3O_2\rightarrow 2CO_2+2H_2O$
Gọi số mol CH4 và C2H4 lần lượt là a;b(mol)
Ta có: $a+b=0,25;2a+3b=0,6\Rightarrow a=0,15;b=0,1$
b, Suy ra $\%V_{CH_4}=60\%;\%V_{C_2H_4}=40\%$
c, Ta có: $n_{CaCO_3}=n_{CO_2}=0,15+0,1.2=0,35(mol)\Rightarrow m_{CaCO_3}=35(g)$
\(a)\\ CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ C_2H_4 + 3O_2 \xrightarrow{t^o} 2CO_2 + 2H_2O\\ b)\ V_{CH_4} = a(lít) ; V_{C_2H_4} = b(lít)\\ \Rightarrow a + b = 5,6(1)\\ V_{O_2} = 2a + 3b = 13,44(2)\\ (1)(2)\Rightarrow a = 3,36 ; b = 2,24\\ \%V_{CH_4} = \dfrac{3,36}{5,6}.100\% = 60\%\\ \%V_{C_2H_4} = 40\%\\ c) V_{CO_2} = a + 2b = 7,84(lít)\\\)
\(CO_2 + Ca(OH)_2 \to CaCO_3 + H_2O\\ n_{CaCO_3} = n_{CO_2} = \dfrac{7,84}{22,4} = 0,35(mol)\\ \Rightarrow m_{CaCO_3} = 0,35.100 = 35(gam)\)
\(V_{O_2}=\dfrac{336}{5}=67,2\left(ml\right)=0,0672\left(l\right)\\ n_{O_2}=\dfrac{0,0672}{22,4}=0,003\left(mol\right)\\ CH_4+2O_2\rightarrow\left(t^o\right)CO_2+2H_2O\\ n_{CO_2}=n_{CH_4}=\dfrac{0,003}{2}=0,0015\left(mol\right)\\ a,V_{CH_4\left(đktc\right)}=0,0015.22,4=0,0336\left(l\right)\\ b,V_{CO_2\left(đktc\right)}=V_{CH_4\left(đktc\right)}=0,0336\left(l\right)\)
\(V_{CH_4} = a(ml) ; V_{C_2H_2} = b(ml)\\ \Rightarrow a + b = 28(1)\\ CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O\\ 2C_2H_2 + 5O_2 \xrightarrow{t^o} 4CO_2 + 2H_2O\\ V_{O_2} = 2a + \dfrac{5}{2}b = 67,2(2)\\ (1)(2) \Rightarrow a = 5,6 ; b = 22,4\\ V_{CH_4} = 5,6(ml) ; V_{C_2H_2} = 22,4(ml)\)
a, PT: \(CH_4+2O_2\underrightarrow{t^o}CO_2+2H_2O\)
\(C_2H_4+3O_2\underrightarrow{t^o}2CO_2+2H_2O\)
Ta có: \(n_{CH_4}+n_{C_2H_4}=\dfrac{6,72}{22,4}=0,3\left(mol\right)\left(1\right)\)
Theo PT: \(n_{CO_2}=n_{CH_4}+2n_{C_2H_4}=\dfrac{8,96}{22,4}=0,4\left(mol\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}n_{CH_4}=0,2\left(mol\right)\\n_{C_2H_4}=0,1\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\%V_{CH_4}=\dfrac{0,2.22,4}{6,72}.100\%\approx66,67\%\\\%V_{C_2H_4}\approx33,33\%\end{matrix}\right.\)
b, Theo PT: \(n_{O_2}=2n_{CH_4}+3n_{C_2H_4}=0,7\left(mol\right)\)
\(\Rightarrow V_{O_2}=0,7.22,4=15,68\left(l\right)\)
a, \(CH_4+2O_2\underrightarrow{^{t^o}}CO_2+2H_2O\)
\(C_2H_4+3O_2\underrightarrow{^{t^o}}2CO_2+2H_2O\)
b, Gọi: \(\left\{{}\begin{matrix}n_{CH_4}=x\left(mol\right)\\n_{C_2H_4}=y\left(mol\right)\end{matrix}\right.\) \(\Rightarrow x+y=\dfrac{4,48}{22,4}=0,2\left(mol\right)\left(1\right)\)
Theo PT: \(n_{O_2}=2n_{CH_4}+3n_{C_2H_4}=2x+3y=\dfrac{15,68}{22,4}=0,7\left(mol\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=-0,1\\y=0,3\end{matrix}\right.\)
Đến đây thì ra số mol âm, bạn xem lại đề nhé.