Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5xny3 chia hết cho B = 4x3y
ta có
5xny3 : 4x3y = \(\dfrac{5}{4}\) xn-3y2
để A chia hết cho B thì n - 3 \(\ge\) 0
n \(\ge\) 3
Bài 1:
a) \(A=\left(-\frac{1}{3}xz^2y\right).\left(-9zy^3x^2\right)\)
\(=3x^3y^4z^3\)
b) Hệ số: 3
Biến: x3y4z3
Bậc: 10
Bài 2:
a) \(B=\left(-\frac{1}{2}zxy^2\right).\left(-8x^2y^3z\right)\)
\(=4x^3y^5z^2\)
b) Hệ số: 4
Biến: x3y5z2
Bậc: 10
#Học tốt!
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)
Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .
A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B
Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi
\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)
Thay n = 2 vào \(n+2\le2n\), ta có :
\(2+2\le2\times2\)(t/mãn)
Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B
Bài 1:
a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)
b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)
c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)
d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)
e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)
f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)
Đề thiếu rồi bạn