Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
bạn phải cho số cuối cùng thì mình mới làm được , nếu không có thì giáo viên của bạn cho sai đề
Ta có
\(\frac{2}{3\cdot4}=\frac{2}{\left(1+2\right)+\left(1+3\right)}\)
\(\frac{2}{4\cdot5}=\frac{2}{\left(2+2\right)\cdot\left(2+3\right)}\)
...
Phân số thứ n là \(\frac{2}{\left(n+2\right)\cdot\left(n+3\right)}\)\(n\in N\)
Phân số thứ 50 là \(\frac{2}{\left(50+2\right)\cdot\left(50+3\right)}=\frac{2}{52\cdot53}\)
\(\Rightarrow\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{52\cdot53}\)
\(=2\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...\frac{1}{52\cdot53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{4}+...+\frac{1}{52}-\frac{1}{53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{53}\right)=\left(\frac{50\cdot2}{159}\right)=\frac{100}{159}\)
Từng bài 1 thôi bn!
b2: \(\frac{a}{b}\cdot\frac{c}{d}=\frac{2}{5}\left(1\right)\Rightarrow\frac{ac}{bd}=\frac{2}{5}\left(3\right)\)
\(\frac{a}{b}\cdot\left(\frac{c}{d}+3\right)\left(2\right)\Rightarrow\frac{ac}{bd}+\frac{3a}{b}=\frac{28}{15}\left(4\right)\)
(4) thành \(\frac{2}{5}+\frac{3a}{b}=\frac{28}{15}\Rightarrow\frac{a}{b}=\frac{22}{45}\)
(1) thành \(\frac{22}{45}\cdot\frac{c}{d}=\frac{2}{5}\Rightarrow\frac{c}{d}=\frac{9}{11}\)
Ta có: \(\frac{n-1}{n!}=\frac{n}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
Áp dụng vào M ta được:
\(M=\frac{1}{2!}-\frac{2}{3!}-\frac{3}{4!}-\frac{4}{5!}-...-\frac{2013}{2014!}\)
\(=\frac{1}{2!}-\left(\frac{1}{2!}-\frac{1}{3!}\right)-\left(\frac{1}{3!}-\frac{1}{4!}\right)-...-\left(\frac{1}{2013!}-\frac{1}{2014!}\right)\)
\(=\frac{1}{2!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{3!}+\frac{1}{4!}-...-\frac{1}{2013!}+\frac{1}{2014!}=\frac{1}{2014!}\)