Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Số cách chọn 6 học sinh từ 15 học sinh là C 15 6 = 5005(cách)
⇒ n ( Ω ) = 5005
Gọi biến cố A: “Chọn được 6 học sinh đủ 3 khối”
=> A ¯ : “Chọn được 6 học sinh không đủ 3 khối”.
Cách 1
+ Trường hợp 1: Chọn 6 học sinh từ 1 khối 1 => Chọn 6 học sinh khối 10 có C 6 6 = 1 (cách).
+ Trường hợp 2: 6 học sinh được chọn trong 2 khối.
* Chọn 6 học sinh trong khối 11 và khối 12 có (cách).
* Chọn 6 học sinh trong khối 10 và khối 12 có (cách)
* Chọn 6 học sinh trong khối 11 và khối 10 có (cách).
Từ 2 trường hợp suy ra
.0
Cách 2
+ Trường hợp 1: Chọn 6 học sinh từ 1 khối => Chọn 6 học sinh khối 10 có C 6 6 = 1 (cách).
+ Trường hợp 2: 6 học sinh được chọn trong 2 khối có
Từ 2 trường hợp suy ra
Ta đếm số cách chọn 4 học sinh từ đội xung kích mà thuộc cả 3 lớp ở trên.
Phương án 1: Chọn 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Phương án 2: Chọn 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Phương án 3: Chọn 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C.
Số cách chọn trong trường hợp này là .
Theo quy tắc cộng thì số cách chọn 4 học sinh thuộc đủ cả ba lớp là 120 + 90 + 60 = 270.
Trong khi số cách chọn 4 học sinh bất kỳ từ đội xung kích là .
Vậy số cách chọn 4 học sinh mà các học sinh không thuộc quá hai lớp là 495 -270 =225.
Chọn C.
Đáp án A.
Chọn 4 học sinh có C 12 4 cách chọn.
Chọn 4 học sinh trong đó 4 học sinh được chọn có cả 3 khối có:
Xác xuất để 4 học sinh được chọn có cả 3 khối là P = 270 C 12 4 = 6 11
Do đó xác suất sao cho 4 học sinh được chọn thuộc không quá 2 khối là 1 - 6 11 = 5 11
Đáp án A
Số cách chọn ngẫu nhiên 4 học sinh là C 12 4 = 495
Gọi p là biến cố: 4 học sinh được chọn thuộc không quá 2 khối thì
p ¯ : 4 học sinh được chọn thuộc 3 khối
⇒ p ¯ = 270
⇒ p = 1 - 270 495 = 5 11
TH 1: 4 học sinh được chọn thuộc một lớp:
A: có cách chọn C 5 4 = 5
B: có cách chọn C 4 4 = 1
Trường hợp này có: 6 cách chọn.
TH 2: 4 học sinh được chọn thuộc hai lớp:
A và B: có C 9 4 - ( C 5 4 + C 4 4 ) = 120
B và C: có C 9 4 - C 4 4 = 125
C và A: có C 9 4 - C 5 4 = 121
Trường hợp này có 366 cách chọn.
Vậy có 366+6=372 cách chọn thỏa yêu cầu bài toán.
Chọn C.
Gọi A là tập hợp mọi cách chọn 4 học sinh trong 12 học sinh
Gọi B là tập hợp cách chọn không thỏa mãn yêu cầu đề bài (tức là chọn đủ học sinh 3 lớp)
Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài
Ta có A = B\(\cup\) C, B \(\cap\) C = \(\varnothing\)
Theo quy tắc cộng ta có
\(\left|A\right|\) = \(\left|B\right|\) + \(\left|C\right|\) \(\Rightarrow\) \(\left|C\right|\) = \(\left|A\right|\) - \(\left|B\right|\) (1)
Dễ thấy \(\left|A\right|\) = \(C_{12}^4\) = 495
Để tính \(\left|B\right|\), ta nhận thấy sẽ chọn một lớp có 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh. Vì thế theo quy tắc cộng và phép nhân, ta có:
\(\left|B\right|\) = \(C_5^2\)\(C_4^1\)\(C_3^1\) + \(C_5^1\)\(C_4^2\)\(C_3^1\) + \(C_5^1\)\(C_4^1\)\(C_3^2\) = 120 + 90 + 60 = 270
Thay vào (1) ta có \(\left|C\right|\) = 495 - 270 = 225
Vậy có 225 cách chọn.
Số cách chọn 4 học sinh từ 12 học sinh đã cho là : C412=495C124=495
Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau :
* Lớp AA có 2 học sinh, các lớp BB, CC mỗi lớp 1 học sinh.
⇒⇒ Số cách chọn là : C25.C14.C13=120C52.C41.C31=120
* Lớp BB có 2 học sinh, các lớp AA, CC mỗi lớp 1 học sinh.
⇒⇒ Số cách chọn là : C15.C24.C13=90C51.C42.C31=90
Lớp CC có 2 học sinh, các lớp AA, BB mỗi lớp 1 học sinh.
⇒⇒ Số cách chọn là : C15.C14.C23=60C51.C41.C32=60
Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là :
120+90+60=270120+90+60=270
Vậy số cách chọn phải tìm là : 495−270=225495−270=225 cách.
Đáp án D
Chọn 4 học sinh bất kỳ có: Ω = C 13 4 = 715
Gọi A là biến cố: “4 học sinh được chọn có đủ 3 khối”
Khi đó
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý mỗi khối đều có ít hơn 8 học sinh).
Số cách chọn 8 học sinh từ hai khối là: .
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Chọn D.
Đáp án D
Phương pháp:
+ ) P ( A ) = n ( A ) n ( Ω )
+ P(A) = 1P( A )
Cách giải: Số phần tử của không gian mẫu: n ( Ω ) = C 18 6
Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”
+ Số cách chọn 6 học sinh bất kỳ từ 18 học sinh là. C 18 6 = 18564
+ Tiếp theo ta đếm số cách chọn ra 6 học sinh từ các học sinh trên mà không có đủ cả ba khối. Khi đó có ba phương án như dưới đây.
Phương án 1: 6 học sinh được chọn thuộc vào khối 10 hoặc 11, số cách chọn là C 13 6 = 1716
Phương án 2: 6 học sinh được chọn thuộc vào cả hai khối 10 và 12, số cách chọn là C 12 6 - C 7 6 = 917
Phương án 3: 6 học sinh được chọn thuộc vào cả hai khối 11 và 12, số cách chọn là C 11 6 - C 6 6 = 461
Vậy số cách chọn 6 học sinh sao cho mỗi khối có ít nhất một học sinh là:
18564 – (1716 + 917 + 461) = 15470.
chọn D.