K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Đáp án D

Nhận xét:

Parabol có bề lõm hướng xuống. Loại đáp án A, C.

Parabol cắt trục hoành tại 2 điểm (3; 0) và (−1; 0). Xét các đáp án B và D, đáp án D thỏa mãn.

5 tháng 8 2017

Đáp án D

Đồ thị đi xuống từ trái sang phải => hệ số góc a < 0. Loại A, C.

Đồ thị hàm số cắt trục tung tại điểm (0; 1).

9 tháng 4 2017

Đáp án B

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} + 4x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.2}} =  - 1;{y_S} = 2.{( - 1)^2} + 4.( - 1) - 1 =  - 3.\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

 

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

b) 

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} + 2x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1;{y_S} =  - {1^2} + 2.1 + 3 = 4.\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

c)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - 3{x^2} + 6x\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1;{y_S} =  - {3.1^2} + 6.1 = 3\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 3 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} - 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.2}} = 0;{y_S} = {2.0^2} - 5 =  - 5.\)

+ Có trục đối xứng là đường thẳng \(x = 0\) (trùng với trục Oy);

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).

Ta vẽ được đồ thị như hình dưới.

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

b)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} =  - 2;{y_S} =  - {( - 2)^2} - 4.( - 2) + 5 = 9.\)

+ Có trục đối xứng là đường thẳng \(x =  - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 2x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} =  - 1;{y_S} =  - {( - 1)^2} - 2.( - 1) - 1 = 0\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=-x^2+4x-3 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

b)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2+2 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

c)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=1/2x^2+x+1 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

d)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2-4x+4 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(y =  - {x^2} + 6x - 9\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( {3;0} \right).\) Trục đối xứng \(x = 3.\) Giao điểm của đồ thị với trục \(Oy\) là: \(A\left( {0; - 9} \right).\) Parabol cắt trục hoành tại \(x = 3.\)

 

Tập giá trị của hàm số là: \(\left( { - \infty ;0} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} + 6x - 9\) đồng biến trên khoảng \(\left( { - \infty ;3} \right)\) và nghịch biến trên khoảng \(\left( {3; + \infty } \right).\)

b) \(y =  - {x^2} - 4x + 1\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( { - 2;5} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x =  - 2 + \sqrt 5 \) và \(x =  - 2 - \sqrt 5 .\)

Tập giá trị của hàm số là: \(\left( { - \infty ;5} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} - 4x + 1\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và nghịch biến trên khoảng \(\left( { - 2; + \infty } \right).\)

c) \(y = {x^2} + 4x\)

Ta có: \(a = 1 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - 2; - 4} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;0} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = 0\) và \(x =  - 4.\)

 

Tập giá trị của hàm số là: \(\left[ { - 4; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = {x^2} + 4x\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right).\)

d) \(y = 2{x^2} + 2x + 1\)

Ta có: \(a = 2 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - \frac{1}{2};\frac{1}{2}} \right).\) Trục đối xứng \(x =  - \frac{1}{2}.\) giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Đồ thị hàm số không có giao điểm với trục \(Ox.\) Lấy điểm \(\left( {1;5} \right)\) thuộc đồ thị hàm số, điểm đối xứng với điểm đó qua trục đối xứng \(x =  - \frac{1}{2}\) là: \(\left( { - 2;5} \right).\)

Tập giá trị của hàm số là: \(\left[ {\frac{1}{2}; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = 2{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...

7 tháng 12 2016

Toán lớp 9.