Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
a: Thay x=1 và y=0 vào (d), ta được:
1-2m+3=0
\(\Leftrightarrow m=2\)
b: Vì đồ thị hàm số đi qua hai điểm P(2;1) và Q(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=4+a=3\end{matrix}\right.\)
a: Vì đồ thị hàm số y=ax+b vuông góc với y=3x+1 nên 3a=-1
hay \(a=-\dfrac{1}{3}\)
Vậy: \(y=-\dfrac{1}{3}x+b\)
Thay x=1 và y=2 vào hàm số, ta được:
\(b-\dfrac{1}{3}=2\)
hay \(b=\dfrac{7}{3}\)
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)
Vậy (1) luôn đi qua A(-1;4)
a)
để đồ thị hàm số đi qua điểm `A(1;-1)`
`<=>-1=(m+1)*1-3`
`<=>m+1-3=-1`
`<=>m-2=-1`
`<=>m=1`
Vậy m=1 thì đồ thị hàm số đi qua điểm `A(1;-1)`
b)
Với `m=1` khi đó `y=(1+1)*x-3<=>y=2x-3`
Với `x=0=>y=2*0-3=-3`
=> điểm `B(0;-3)` thuộc đồ thị hàm số `y=2x-3`
a) Để đồ thị hàm số đi qua điểm A(1;-1), ta thay x = 1 và y = -1 vào phương trình của hàm số:
-1 = (m+1)(1) - 3
-1 = m + 1 - 3
-1 = m - 2
m = 1
Vậy, với giá trị m = 1, đồ thị hàm số sẽ đi qua điểm A(1;-1).
b) Đồ thị của hàm số y = (m+1)x - 3 sẽ là một đường thẳng.
Vô số điểm.