K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

- Cách vẽ:

    + Cho x = 1 ta được y = √3.1 = √3

    + Dựng điểm A(1; √3 ). Vẽ đường thẳng qua O, A được đồ thị hàm số y = √3 x.

- Các bước vẽ đồ thị hàm số y = √3 x.

    + Dựng điểm B(1; 1). Vẽ OB ta được

Để học tốt Toán 9 | Giải bài tập Toán 9

    + Dựng điểm √2 trên trục hoành Ox: vẽ cung tròn bán kính OC = √2, cắt Ox tạ điểm có hoành độ là √2.

    + Dựng điểm D(√2; 1). Vẽ OD ta được

Để học tốt Toán 9 | Giải bài tập Toán 9

    + Dựng điểm √3 trên trục tung Ox: Vẽ cung tròn bán kính OD = √3 cắt Oy tại điểm có tung độ là √3.

    + Dựng điểm A(1; √3)

    + Vẽ đường thẳng O, A ta được đồ thị hàm số y = √3 x.

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 4 2017

Ta có: \(\sqrt{3}\) = \(\sqrt{2+1}\) = \(\sqrt{\left(\sqrt{2}\right)^2+1^2}\)

Hình vẽ SGK có : OC = OB = \(\sqrt{2}\) và theo định lí Py-ta-go t a có :

OD = \(\sqrt{OC^2+CD^2}\)= \(\sqrt{\left(\sqrt{2}\right)^2+1^2}\)= \(\sqrt{3}\)

Dùng compa ta xác định được điểm biểu diễn số \(\sqrt{3}\). trên Oy. Từ đó xác định được điểm A.
bai4

18 tháng 9 2018

- Cách vẽ:

    + Cho x = 1 ta được y = √3.1 = √3

    + Dựng điểm A(1; √3 ). Vẽ đường thẳng qua O, A được đồ thị hàm số y = √3 x.

- Các bước vẽ đồ thị hàm số y = √3 x.

    + Dựng điểm B(1; 1). Vẽ OB ta được

Để học tốt Toán 9 | Giải bài tập Toán 9

    + Dựng điểm √2 trên trục hoành Ox: vẽ cung tròn bán kính OC = √2, cắt Ox tạ điểm có hoành độ là √2.

    + Dựng điểm D(√2; 1). Vẽ OD ta được

Để học tốt Toán 9 | Giải bài tập Toán 9

    + Dựng điểm √3 trên trục tung Ox: Vẽ cung tròn bán kính OD = √3 cắt Oy tại điểm có tung độ là √3.

    + Dựng điểm A(1; √3)

    + Vẽ đường thẳng O, A ta được đồ thị hàm số y = √3 x.

23 tháng 4 2017

Bài giải:

Hình bên diễn tả cách dựng đoạn thẳng có độ dài bằng √5.

Đồ thị hàm số y = √5 x + √5 đi qua hai điểm A(0; √5) và B(-1; 0).

6 tháng 12 2017

Cho x = 0 => y = √3 ta được (0; √3).

Cho y = 0 => √3 x + √3 = 0 => x = -1 ta được (-1; 0).

Như vậy để vẽ được đồ thị hàm số y = √3 x + √3 ta phải xác định được điểm √3 trên Oy.

Các bước vẽ đồ thị y = √3 x + √3 :

   + Dựng điểm A(1; 1) được OA = √2.

   + Dựng điểm biểu diễn √2 trên Ox: Quay một cung tâm O, bán kính OA cắt tia Ox, được điểm biểu diễn √2.

   + Dựng điểm B(√2; 1) được OB = √3.

   + Dựng điểm biểu diễn √2. Trên trục Oy: Quay một cung tâm O, bán kính OB cắt tia Oy, được điểm biểu diễn √3

   + Vẽ đường thẳng qua điểm biểu diễn √3 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √3 x + √3.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Áp dụng vẽ đồ thị hàm số y = √5 x + √5

- Cho x = 0 => y = √5 ta được (0; √5).

- Cho y = 0 => √5 x + √5 = 0 => x = -1 ta được (-1; 0).

Ta phải tìm điểm trên trục tung có tung độ bằng √5.

Cách vẽ:

   + Dựng điểm A(2; 1) ta được OA = √5.

   + Dựng điểm biểu diễn √5 trên trục Oy. Quay một cung tâm O, bán kính OA cắt tia Oy, được điểm biểu diễn √5. Vẽ đường thẳng qua điểm biểu diễn √5 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √5 x + √5.

Để học tốt Toán 9 | Giải bài tập Toán 9

 

25 tháng 6 2019

a) Cho x = 0 => y = √3 ta được (0; √3).

Cho y = 0 => √3 x + √3 = 0 => x = -1 ta được (-1; 0).

Như vậy để vẽ được đồ thị hàm số y = √3 x + √3 ta phải xác định được điểm √3 trên Oy.

Các bước vẽ đồ thị y = √3 x + √3 :

   + Dựng điểm A(1; 1) được OA = √2.

   + Dựng điểm biểu diễn √2 trên Ox: Quay một cung tâm O, bán kính OA cắt tia Ox, được điểm biểu diễn √2.

   + Dựng điểm B(√2; 1) được OB = √3.

   + Dựng điểm biểu diễn √2. Trên trục Oy: Quay một cung tâm O, bán kính OB cắt tia Oy, được điểm biểu diễn √3

   + Vẽ đường thẳng qua điểm biểu diễn √3 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √3 x + √3.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Áp dụng vẽ đồ thị hàm số y = √5 x + √5

- Cho x = 0 => y = √5 ta được (0; √5).

- Cho y = 0 => √5 x + √5 = 0 => x = -1 ta được (-1; 0).

Ta phải tìm điểm trên trục tung có tung độ bằng √5.

Cách vẽ:

   + Dựng điểm A(2; 1) ta được OA = √5.

   + Dựng điểm biểu diễn √5 trên trục Oy. Quay một cung tâm O, bán kính OA cắt tia Oy, được điểm biểu diễn √5. Vẽ đường thẳng qua điểm biểu diễn √5 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √5 x + √5.

Để học tốt Toán 9 | Giải bài tập Toán 9

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{1}{2}x^2-x-4=0\\y=x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-8=0\\y=x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+2\right)=0\\y=x+4\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(4;8\right);\left(-2;2\right)\right\}\)

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất