K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...

14 tháng 11 2021

Đáp án :

B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.

1) Hai đồ thị gọi là đối xứng với nhau qua trục hoành nếu f(x)+f(x)'=0

Do:

        f(x)=x-2,f(x)'=2-x và f(x)+f(x)'=0=>Chúng đối xứng với nhau qua trục hoành.

4 tháng 11 2021

Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)

Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)

Vậy \(\left(P\right):y=2x^2-x+3\)

 

4 tháng 11 2021

DẠ CẢM ƠN NHIỀU Ạ !!!

Gọi công thức của hàm số bậc hai là \(y=ax^2+bx+c\)

Trục đối xứng là x=3 nên \(-\dfrac{b}{2a}=3\)

=>b=-2a

Thay x=0 và y=-16 vào (d), ta được:

\(a\cdot0^2+b\cdot0+c=-16\)

=>c=-16

=>\(y=ax^2+bx-16\)

Thay x=-2 và y=0 vào (d), ta được:

\(a\cdot\left(-2\right)^2+b\left(-2\right)-16=0\)

=>4a-2b-16=0

=>\(4a-2\cdot\left(-2a\right)=16\)

=>8a=16

=>a=2

=>b=-2a=-4

Vậy: Công thức cần tìm là \(y=2x^2-4x-16\)

7 tháng 8 2018

Xét đáp án  

Chọn A.

Theo đề, ta có:

-b/2=2 và 0+0+c=6

=>c=6 và b=-4

NV
19 tháng 12 2020

\(m\ne\pm1\)

ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)

Miền xác định của hàm là miền đối xứng

Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn

\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\) 

\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...