Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta gọi hai cạnh goc vuông và là AB Và AC thì AB/5=AC/12 = x Vậy AB = 5x ;AC = 12x
S tgv ABC = 1/2 x5Xx12X=30 vậy 30xX^2 = 30 => X^2= 1 =>X=1 vậy 2 cạnh góc vuông là 5 và 12 cạnh huyền là 13
Gọi 2 cạnh góc vuông và cạnh huyền của tam giác đó lần lượt là a;b;c
Theo đề bài ta có : \(S=\frac{ab}{2}=150m^2\Rightarrow ab=300\left(m\right)\)
Và \(\frac{a}{3}=\frac{b}{4}\) \(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{ab}{3.4}=\frac{300}{12}=25=5^2\)
\(\Rightarrow\left(\frac{a}{3}\right)^2=5^2\Rightarrow\frac{a}{3}=5\Rightarrow a=15\)
\(\Rightarrow\left(\frac{b}{4}\right)^2=5^2\Rightarrow\frac{b}{4}=5\Rightarrow b=20\)
Áp dụng định lý pitago ta có :
\(c^2=a^2+b^2=15^2+20^2=225+400=625=25^2\)
\(\Rightarrow c=25\left(m\right)\)
Vậy cạnh huyền của tam giác đó dà 25m .
Gọi độ dài 2 cạnh góc vuông là a và b. Ta có: 3a=4b => a=\(\frac{4b}{3}\)(1)
và a.b=150.2=300 <=> \(\frac{4b}{3}.b=300\)=> b.b=225=15.15 => b=15 (cm). Thay vào (1) => a=\(\frac{4.15}{3}\)=20 (cm)
=> Độ dài cạnh huyền là: \(\sqrt{15^2+20^2}=\sqrt{225}\)=25 (cm)
Gọi 2 cạnh góc vuông là a,b
Ta có: a/8=b/15
Theo định lí Pytago ta có: a^2+b^2=51^2=2601
\(<=>\frac{a^2}{8^2}=\frac{b^2}{15^2}\)
Theo tc dãy tỉ số bằng nhau =>\(\frac{a^2}{64}=\frac{b^2}{225}=\frac{a^2+b^2}{64+225}=\frac{2601}{289}=9\)
=>a^2=9.64=576 =>a=căn bậc 2 của 576=24
b^2=9.225=2025 =>b=45
Vậy độ dài 2 cạnh đó là 24 và 45
gọi độ dài 2 cạnh góc vuông lần lượt là a, b ( cm ), độ dài cạnh huyền là c(cm) ( a,b,c > 0 ) Ta xét tam giác ABC vuông tại A
Đặt \(\frac{a}{7}\)= \(\frac{b}{24}\)= k => a = 7k, b = 24k
ta có \(\frac{ab}{2}\)= 336 => 7k * 24k = 672 => \(168k^2=672\)
=> \(k^2=4\)=> k = 2 => a = 2 * 7 = 14, b = 2 * 24 = 48
Xét tam giác ABC vuông tại A theo định lý Py-ta-go ta có
\(a^2+b^2=c^2\)=> \(c^2=14^2+48^2\)
=> \(c^2=2500\)=> c = 50 cm
vậy độ dài cạnh huyền là 50 cm
Gọi độ dài các cạnh góc vuông lần lượt là x ; y x , y > 0
Theo định lí Py – ta – go ta có: x 2 + y 2 = 26 2 ⇔ x 2 + y 2 = 676
Theo bài ra ta có: x 5 = y 12 ⇒ x 2 25 = y 2 144 = x 2 + y 2 25 + 144 = 676 169 = 4
Khi đó ta có: x 2 = 25.4 y 2 = 144.4 ⇒ x = 10 c m y = 24 c m
Chọn đáp án B.
giả sử tam giác ABC vuông tại A(AC>AB)
ta có BC=102 cm
AC = (15.AB )/8
tam giác ABC vuông tại A(giả thiết)
=> AB2 + AC2 =BC2
(=) AB2 + 225/64 AB2 = 1022 = 10404
(=) 289 AB2 = 10404.64=665856
=> AB2 = 2304
=> AB = \(\sqrt{2304}=48\)
AC= 15/8 . 48 = 90 (cm)
#Học-tốt
Giả sử hai cạnh góc vuông cần tìm là a và b (cm) ( b>a>0)
Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15
hay a/8=b/15=k (k>0)
suy ra a=8k, b = 15k (1)
vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)
từ (1) va (2) suy ra 64k2 + 225 k2 = 10404
289 k2 = 10404
k2=36
k=6
a=48 (cm), b = 90 (cm)
Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là \(a;b;c\left(a;b\ne0\right)\)
Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)
Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)
Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)
Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)
Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90