Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi cạnh huyền là a và 2 cạnh góc vuông là b,c (cạnh thứ 3 là c\(;\)\(b,c>0,a>50\)) \(\Rightarrow\) a,b có độ dài là 2 số nguyên tố
\(\Rightarrow\)\(a,b\ne2\) (do có hiệu là 50)
ta có : \(a=b+50\)
\(\Rightarrow\)\(c^2=a^2-b^2=100b+2500\)
để c nhỏ nhất thì c^2 nhỏ nhất \(\Rightarrow\) b là số nguyên tố nhỏ nhất khác 2 thoả mãn \(100b+2500\) là số chính phương nhỏ nhất
thử chút ta thấy \(b=11\) là giá trị b cần tìm \(\Rightarrow\)\(\hept{\begin{cases}a=11+50=61\\c=\sqrt{61^2-11^2}=60\end{cases}}\) (nhận)
Theo công thức Heron ta có :
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\) (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))
=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)
=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)
<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)
+) cách chứng minh định lý Heron
Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có
\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)
ta có diện tích tam giác ABC
\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)
\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)
\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)
\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
Bạn vẽ hình nhé
Xét tam giác AOB
=> \(AO+OB>AB\)(bất đẳng thức tam giác )
=> \(AB< 6.25\) => \(a,b,c< 6.25\)
Tương tự \(AC< 6.25\),\(BC< 6.25\)
Sử dụng công thức herong và công thức tính S tam giác ta có
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)(p là nửa chu vi tam giác )
\(S=\frac{abc}{4R}\)
=> \(\frac{abc}{R}=\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}\)
Mà a,b,c là các số tự nhiên , \(\frac{abc}{4R}=\frac{abc}{12.5}\)là số hữu tỉ
=> \(\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)}\)là số tự nhiên
=> \(\frac{abc}{R}\)là số tự nhiên
=> \(\frac{8abc}{25}\)là số tự nhiên
Mà \(a,b,c< 6.25\)
=> 2 trong 3 số sẽ chia hết cho 5 => 2 trong 3 số sẽ bằng 5
Vì vai trò của a,b,c như nhau
Giả sử a=b=5
Thay vào công thức
=> \(8c=\sqrt{\left(10+c\right)\left(10-c\right)\left(c\right)\left(c\right)}\)
=> \(64c^2=100c^2+c^4\)
=> \(c=6\)
Vậy ba cạnh của tam giác là 5,5,6