Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình lm bài 3 nhá!!!
Bài 3:Chứng tỏ rằng:
a) n + 1 và n + 2 nguyên tố cùng nhau
Gọi UCLN ( n+1; n+2 ) = d
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow n+2-n-1⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(n+2;+1\right)=1\)
Vậy n + 1 và n +2 là hai số nguyên tố cùng nhau
b) 2n + 3 và 3n + 4
Gọi UCLN ( 2n+3; 3n+4 ) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d}\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(2n+3;3n+4\right)⋮d\)
Vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi UCLN 2n + 3, n + 2 là d, khi đó:
\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên
Vậy (2n + 3,n + 2) = 1 (đpcm)
a, Gọi d = ƯCLN(n+2;n+3)
\(\Leftrightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+2;n+3\right)=1\rightarrowđpcm\)
b, Gọi d = ƯCLN(n+1; 3n+4)
\(\Leftrightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+1;3n+4\right)=1\rightarrowđpcm\)
a)
Đặt UCLN ( n+2,n+3 ) = d
=> n+2 : d, n+3 : d
=> n+3 - n+2 : d
hay 1 : d
=> d thuộc Ư(1)=1
=> UCLN ( n+2,n+3 ) = 1
=> n+2 và n+3 là hai số nguyên tố cùng nhau.
b)
Đặt UCLN ( n+1,3n+4 ) = d
=> n+1 : d và 3n+4 : d
=> 3.(n+1) : d hay 3n + 3 : d và 3n+4 : d.
=> 3n+4 - 3n+3 : d hay 1 : d
=> d thuộc Ư(1) = 1
=> UCLN ( n+1,3n+4 ) = 1
=> n+1 và 3n+4 là hai số nguyên tố cùng nhau.
- Nếu n là số chẵn thì n + 1 là số chẵn => 3n + 4 là số lẻ.
- Nếu n là số lẻ thì 3n + 4 là số chẵn => n + 1 là số lẻ.
Vậy, n + 1 là 3n + 4 là hai số nguyên tố cùng nhau.
gọi a là Ucln của 3n+4 và n+1
3n+4:a
n+1=3(n+1):a+3n+3
Vậy (3n+4)-(3n+3) :a
3n+4-3n-3 :a
=1:a
Vậy 3n+4 và n+1 là số nguyên tố cùng nhau
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
gọi UCLN (n+1;3n+4) là d ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d=>3n+3 chia hết cho d
và 3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(...)=1
=>n+1 và 3n+4 NTCN
=>dpcm
Gọi UCLN(n + 1 , 3n + 4) = d
n + 1 chia hết cho d => 3n + 3 chia hết cho d
Mà UCLN(3n + 3 , 3n + 4) = 1 do đó d = 1
Vậy (n + 1 , 3n + 4) = 1