Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng chứa đường tròn ( ω )
Mặt cầu (S) có tâm I(2;4;6) và có bán kính R = 24 = 2 6 . Ta có:
I A = 4 2 + 2 2 + 8 2 = 4 6
Do hai đường tròn ω và ω ' có cùng bán kính nên IA=IM = 4 6
Tam giác IAK vuông tại K nên ta có
I K 2 = I H . I A ⇒ I H = I K 2 I A = 24 4 6 = 6
Do H là tâm của đường tròn ω nên điểm H cố định.
Tam giác IHM vuông tại H nên ta có:
M H = I M 2 - I H 2 = 4 6 2 - 6 2 = 3 10
Do H cố định thuộc mặt phẳng (P), M di động trên mặt phẳng (P) và M H = 3 10 không đổi. Suy ra điểm M thuộc đường tròn có tâm là H và có bán kính r = H M = 3 10
Chọn đáp án B.
Đáp án C
⇒ x + 2 2 + y 2 + z + 2 2 2 + x x + 4 + y y + 4 + z 2 = 16
⇔ x 2 + y 2 + z 2 + 4 x + 2 y + 2 2 z − 2 = 0 S '
Giao tuyến của S và S ' là nghiệm của hệ phương trình:
S : x 2 + y 2 + z 2 + 2 x + 4 y + 1 = 0 , I − 1 ; − 2 ; 0 S ' : x 2 + y 2 + z 2 + 4 x + 2 y + 2 2 z − 2 = 0
Ta có: S=22+42+62+...+202
=(2.1)2+(2.2)2+(2.3)2+...+(2.10)2
=22.12+22.22+22.32+...+22.102
=22.(1+22+32+...+102)
Mà 12+22+32+...+102=385 nên:
S=22.385
=4.385
=1540
Vậy S=1540