\(D=\left|x+2\right|+\left|3x-1\right|+\left|x-4\right|\)

Tính GTNN

Mình đag...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

D = | x+2| + | 3x-1| + | x-4| = | x+2| + | x-4| + |3x-1| = | x+2+4-x| + | 3x-1| = |6| + |3x-1| 

dấu " = " xảy ra : (x+2)(4-x) lớn hơn hoặc bằng 0 và 6 lớn hơn hoặc bằng 0 

suy ra x= 6 hoặc 2 bé hơn hoặc bằng x bé hơn hoặc bằng 4 

 suy ra MinD = 2 

 (Min là giá trị nhỏ nhất nha)

k cho tui nha

14 tháng 8 2021

\(D=\left|x+3\right|+\left|x-2\right|+7=\left|x+3\right|+\left|2-x\right|+7\ge\left|x+3+2-x\right|+7=12\)

Dấu ''='' xảy ra khi \(\left(x+3\right)\left(2-x\right)\ge0\Leftrightarrow-3\le x\le2\)

Vậy GTNN của D bằng 12 tại -3 =< x =< 2 

11 tháng 8 2021

\(C=\left(2x-5\right)^2+17\ge17\)

Dấu ''='' xảy ra khi x = 5/2 

Vậy GTNN của C bằng 17 tại x = 5/2 

11 tháng 8 2021

Ta có \(\left(2x-5\right)^2\ge0\forall x\)

=> \(C=\left(2x-5\right)^2+17\ge17\)

=> Min C = 17 

Dấu "=" xảy ra <=> 2x - 5 = 0

<=> x = 2,5

Vậy Min C = 17 <=> x = 2,5

A = I x + 2 I + I x - 3 I 

GTNN là 1 nha bạn 

14 tháng 8 2021

\(A=\left|x+2\right|+\left|x-3\right|=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Dấu ''='' xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)

Vậy GTNN của A bằng 5 tại \(-2\le x\le3\)

11 tháng 8 2021

\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)

Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)

\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)

Dấu ''='' xảy ra khi x = -5

Vậy GTLN của A bằng 11/4 tại x = -5

11 tháng 8 2021

tks, cảm ơn nhìu ak

DD
22 tháng 7 2021

d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)

\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)

\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)

\(\ge\left|6-2x+2x+5\right|=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).

e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)

\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)

Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).

f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)

\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)

\(=\left|2x-3\right|+\left|2x-7\right|\)

\(\ge\left|2x-3+7-2x\right|=4\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

25 tháng 7 2021

a) Ta có |x - 3| + |7 - x| \(\ge\left|x-3+7-x\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x - 3)(7 - x) \(\ge0\Leftrightarrow3\le x\le7\)

Vậy \(3\le x\le7\)

b)  Ta có |x + 1| + |x - 4| = |x + 1| + |4 - x| \(\ge\left|x+1+4-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra <=> \(\left(x+1\right)\left(4-x\right)\ge0\Leftrightarrow-1\le x\le4\)

Vậy \(-1\le x\le4\)

c) Ta có |x + 3| + |x + 7| = |-x - 3| + |x + 7| \(\ge\left|-x-3+x+7\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> \(\left(-x-3\right)\left(x+7\right)\ge0\Leftrightarrow-7\le x\le-3\)

Vậy \(-7\le x\le-3\)

11 tháng 8 2021

Ta có : \(\left|x-2\right|+\left|y-5\right|+10\ge10\)

\(\Rightarrow\frac{-15}{\left|x-2\right|+\left|y-5\right|+10}\ge-\frac{15}{10}=-\frac{3}{2}\)

\(\Rightarrow B=3-\frac{15}{\left|x-2\right|+\left|y-5\right|+10}\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu ''='' xảy ra khi x = 2 ; y = 5 

Vậy GTNN của B bằng 3/2 tại x = 2 ; y = 5

11 tháng 8 2021

sao bạn ko k cho mọi người vậy mn đã tốn công làm rồi mà