Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)
Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
= \(\sqrt{xy}\)
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)
Thay a=7,25 và b= 3,25 vào (*) ta có:
\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
3/a) \(BĐT\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(đúng với mọi x, y không âm)
Đẳng thức xảy ra khi x = y
b) \(BĐT\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) (đúng với mọi x, y không âm)
"=" <=> x = y
c) BĐT \(\Leftrightarrow2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2\ge0\) (đúng)
"=" <=> a = b = 1
1/ \(A=\sqrt{7-2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}-\sqrt{2}\right|\) (thực ra em nghĩ ko cần thêm trị tuyệt đối đâu nhưng thêm cho chắc:D)
\(=\sqrt{7}-1-\sqrt{7}+\sqrt{2}=\sqrt{2}-1\)
2/Em thấy nó sai sai nên thôi:(
ta có A\(=\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
và B\(=\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}-\frac{2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)
ta đi so sánh hai số trừ của A và B : \(\frac{1}{\sqrt{x}+1}\)và\(\frac{2}{\sqrt{x}}\)
\(\frac{1}{\sqrt{x}+1}=\frac{2}{2\sqrt{x}+2}\)mà \(2\sqrt{x}+2>\sqrt{x}\)\(\Rightarrow\frac{2}{2\sqrt{x}+2}< \frac{2}{\sqrt{x}}\)
Mà số trừ càng lớn thì phép trừ đó có giá trị bé => A > B