Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì (3x - 2)(2y-3)=1
=> 3x-2 = 1 ; 2y-3 = 1
Ta có :+) 3x - 2 = 1
=> 3x = 3
=> x= 1
+) 2y-3 = 1
=> 2y = 4
=> y = 2
Vậy x=1; y = 2
b) Vì (x + 1)(2y-1) = 12
=> (x+1) và (2y-1) ϵ Ư(12) = {1 ; 2 ; 6 ; 3 ; 4 ; 12 }
Ta thấy : 2y - 1 là số lẻ
=> 2y-1 ϵ {1 ; 3 }
+ Nếu 2y - 1 = 1
=> 2y = 1 + 1
2y = 2
=> y = 1
=> x+1 = 12
=> x = 11
+ Nếu 2y - 1 = 3
=>2y = 4
=> y = 2
=> x+1 = 6
=> x = 5
Vậy x = 11 ; 5
y = 1 ; 2
cau1: y = 7
cau2: số đối của b là 20
( nhìn bài của bn ,mk lại nhớ toi thay tien tai nang, bun wá k mun lam nua)
Câu 1: 7
Câu 2: 20
Câu 3: 1
Câu 4: 100
Câu 5: 20
Câu 6: 7
Câu 7: - 100
Câu 8: 101
Câu 9: 70
Câu 10: Mình quên cách làm mất rồi, bạn thông cảm cho mình nhé!!!
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là 12 phần tử.
Tập hợp các số tự nhiên là bội của 13 và có 7 phần tử.
Viết số 43 dưới dạng tổng hai số nguyên tố với . Khi đó 41
Tập hợp các số có hai chữ số là bội của 32 là {32; 64; 96}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").
Tập hợp các số tự nhiên sao cho là {2}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").
Tổng của tất cả các số nguyên tố có 1 chữ số là 17
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là 0
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố 3
Cho là các số nguyên tố thỏa mãn . Tổng 9
Gọi A là tập hợp ước của 154. A có số tập hợp con là 256 tập.
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
a)\(\frac{2}{7}\)= \(\frac{4}{14}\)= \(\frac{6}{21}\)=\(\frac{8}{28}\)= ...
vì 5 < y < 29 \(\Rightarrow\)\(\frac{x}{y}\)= \(\frac{4}{14}\)= \(\frac{6}{21}\)= \(\frac{8}{28}\)
b)\(\frac{28}{8}\)= \(\frac{7}{2}\)= \(\frac{14}{4}\)= \(\frac{21}{6}\)= \(\frac{35}{10}\)= ...
vì 1 < y < 10\(\Rightarrow\)\(\frac{x}{y}\)= \(\frac{14}{4}\)= \(\frac{21}{6}\)
Câu 1 : Các số là bội của 3 là :0;3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48;51;54;57;.....
Các số là ước của 54 là:1;2;3;6;9;18;27;54.
Các số vừa là bội của 3 vừa là ước của 54 là:3;6;9;18;27;54
Vậy có 6 số vừa là bội của 3 vừa là ước của 54
Câu 2 : { 32;64;96 }
Câu 3 : Tập hợp các số có hai chữ số là bội của 41 là {41;82 }
Câu 4: a = 2
Câu 5 : vì a là 1 số chẵn chia hết cho 5 nên tận cùng của a sẽ =0
vì b là 1 số chia hết cho 2 nên b sẽ có tận cùng là số chẵn
vậy 0+với bất kỳ số nào thì bằng chính số đó, trong trường hợp này, 0+ với 1 số chẵn: là chữ số tận cùng của b nên bằng số chẵn chia hết cho 2
Ví dụ 1: a=20
b=2
vậy a+b=20+2=22 chia hết cho 2 và có số dư là 0
ví dụ 2: a=30
b=4
a+b=30+4=34 chia hết cho 2 có số dư là 0
từ đó suy ra: a+b rồi chia 2 sẽ có số dư là 0
số vừa là bội của 3 vừa là ước của 54 là:54,27,18,...
(x+2)2+2(y-3)2<4
với x và y là số nguyên mà (x+2)2 và (y-3)2 luôn lớn hơn hoặc bằng 0 thì các cặp số (x+2)2 và 2(y-3)2 phải là các số chính phương nhỏ hơn 4 và các số chính phương nhỏ hơn 4 là 0và 1
TH1: (x+2)2=2(y-3)2=0
=> (x+2)2+2(y-3)2=0
=> \(\begin{cases}x+2=0\\y-3=0\end{cases}\)
=>\(\begin{cases}x=-2\\y=3\end{cases}\)
TH2: (x+2)2=0 và (y-3)2=1
=> x=-2
ta có :
(y-3)2=1
=>\(y-3=\pm1\)
=>\(\left[\begin{array}{nghiempt}y-3=-1\\y-3=1\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}y=2\\y=4\end{array}\right.\)
TH3:(x+2)2=1 và (y-3)2=0
=>\(\left[\begin{array}{nghiempt}x+2=1\\x+2=-1\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
ta có: (y-3)2=0=> y=3
các cặp số nguyên x và y thoả mãn đề bài là:
+ với x=-2 thì y=3 hoặc y=4 hoặc y=2
+ với x=-1 hoặc x=-3 thì y đều =3
tks