Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
AD = AB (giả thuyết)
\(\widehat{A_1}=\widehat{A_2}=90^0\)
AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)
\(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\)
Hay DE vuông góc với BC
A B C D E N
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
Ta có : \(\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+2b+3c=44,2\end{cases}\) \(\Leftrightarrow\begin{cases}\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}\\a+2b+3c=44,2\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{a}{3}=\frac{2b}{8}=\frac{3c}{15}=\frac{a+2b+3c}{3+8+15}=\frac{44,2}{26}=1,7\)
Từ đó dễ dàng suy ra a,b,c.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Câu 1:
\(x^2=64\\ Mà:\left[{}\begin{matrix}8^2=64\\\left(-8\right)^2=64\end{matrix}\right.\\ Mặtkhác:x^3< 0\\ =>x< 0\\ =>\left[{}\begin{matrix}x=8\left(Loại\right)\\x=-8\left(TMĐK\right)\end{matrix}\right.\)
Vậy: x= -8
Câu 6:
\(f\left(x\right)=x^4-16\\ < =>f\left(x\right)=\left(x^2\right)^2-4^2\\ < =>f\left(x\right)=\left(x^2-4\right)\left(x^2+4\right)\\ < =>f\left(x\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ =>\left[{}\begin{matrix}x-2=0\\x+2=0\\x^2+4=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: f(x) có 2 nghiệm .
\(\left(1\right)\left\{{}\begin{matrix}x^2=64\\x^3< 0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=\pm8\\x< 0\end{matrix}\right.\) =>x=8
\(\left(2\right):...2^{5x-4x}=2^x=2^5=>x=5\)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)
=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))
=> ac + bc - ab - ac = 0
=> bc - ab = 0
=> b(c - a) = 0
Mà b \(\ne0\) nên c - a = 0 => c = a
Tương tự ta có: a = b
Từ đó có: a = b = c
Thay vào M được:
\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
\(\left(abc\right)^2=\left(\frac{3}{5}\right)^2\)
\(abc=\frac{3}{5}\)
c=1;a=3/4;b=4/5