Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: M đối xứng với D qua AB
nên AB là đường trung trực của MD
=>AB vuông góc với MD tại trung điểm của MD
hay E là trung điểm của MD
Ta có: D và N đối xứng nhau qua AC
nên AC là đường trung trực của ND
=>AC vuông góc với ND tại trung điểm của ND
=>F là trung điểm của ND
Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DF//AB
Do đó: F là trung điểm của AC
Xét tứ giác ADBM có
E là trung điểm của AB
E là trung điểm của MD
Do đó:ADBM là hình bình hành
mà DA=DB
nên ADBM là hình thoi
Xét tứ giác ADCN có
F là trung điểm của AC
F là trung điểm của ND
Do đó: ADCN là hình bình hành
mà DA=DC
nên ADCN là hình thoi
a, Tứ giác adch có góc cha=90 độ và hai đường chéo cắt nhau tại trung điểm mỗi đoạn( trở thành hbh) => adch là hcn
b, do adch là hcn nên ad//ch=>ad//he và ad=ch => ad= he.
=> adhe là hbh
A B C H I D O
a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC
CH _|_ AB mà BD _|_ AB => CH // BD
=> BHCD là hình bình hành
b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường
mà có I là trung điểm của BC )gt-
=> I là trung điểm của HD
=> H;I;D thẳng hàng
c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD
=> OI là đường trung bình của tam giác AHD
=> OI = AH/2
=> 2OI = AH
d, đang nghĩ
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
a/
I là giao điểm của hai đường phân giác
=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)
=>tam giác BIC cân tại I
=> g IBC=g ICB
=> g IBD= g ICE
tg IBD và tg ICE, có:
g IDB=g IEC (=90 độ)
g IBD= g ICE
BI=IC
=> tg IBD=tg ICE(ch-gn)
=> ID=IE
mà ADIE là hình vuông(g D= g A=g E=90 độ)
=> ADIE là hình vuông
b/
câu này mk thấy lạ, ADIE la hình vuông thì AD=AE, AB=AC
I là giao điểm của hai đường phân giác
=>IB=IC( tính chất giao điểm của 3 đg phân giác tronh tam giác)
=>tam giác BIC cân tại I
=> g IBC=g ICB
=> g IBD= g ICE
tg IBD và tg ICE, có:
g IDB=g IEC (=90 độ)
g IBD= g ICE
BI=IC
=> tg IBD=tg ICE(ch-gn)
=> ID=IE
từ a nối đến i
Xét tg vuông AID và tg vuông AIE có
ID=IE
AI cạnh chung
=> tg AID =tg AIE (ch-cgv)
=> AD =AE (2 cạnh tương ứng)
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
Suy ra: BH//CD; BD//CH
=>AB⊥BD; AC⊥CD
=>\(\widehat{ABD}=\widehat{ACD}=90^0\)
b: Ta có: ΔABD vuông tại B
nên ΔABD nội tiếp đường tròn đường kính AD
hay I là giao điểm của các đường trung trực của ΔDAB
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A