Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{A}=180^0-70^0-36^0=74^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
b: Xét ΔABM vuông tại B và ΔADM vuông tại D có
AM chung
AB=AD
Do đó: ΔABM=ΔADM
c: Ta có: ΔABM=ΔADM
nên MB=MD
hay M nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Ta có: NB=ND
nên N nằm trên đường trung trực của BD(3)
Từ (1), (2) và (3) suy ra A,N,M thẳng hàng
XétΔABD và ΔACE có
AB=AC(gt)
góc A chung
AD=AE(gt)
=> ΔABD= ΔACE(cgc)
=> góc ABD = góc ACE ( 2 góc tương ứng )
b, Ta có ΔABC cân tại A
=> góc ABC = góc ACB ( 2 góc ở đáy )
Ta lại có góc ABD+góc DBC = góc ABC góc ACE+góc ECB = góc ACB
=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a) hay góc IBC = góc ICB ( vì BD cắt CE tại I )
Xét ΔIBCcó
góc IBC = góc ICB ( cmt )
=>ΔIBC cân tại I
Câu b cô tớ in ra đề như vậy bạn ạ. ĐỂ chiều mình hỏi lại cô ạ
A B C E D 1 2 1 2
Giải:
Do \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC\circledast\)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\) ( theo \(\circledast\) )
\(\widehat{A}\): góc chung
\(AE=AD\left(gt\right)\)
\(\Rightarrow\Delta ABD=\widehat{ACE}\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
b) Vì \(\Delta ABC\) cân tại A nên \(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B_2}=\widehat{C_2}\) ( do \(\Delta ABD=\Delta ACE\) )
\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\Delta IBC\) cân tại I
Vậy...
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác ACE có:
-AD = AE (GT)
-góc A: góc chung
-AB = AC (vì ABC là \(\Delta\)cân)
Vậy tam giác ABD = tam giác ACE (c.g.c)
b/ Vì tam giác ABD = tam giác ACE (câu a)
nên góc ABD = góc ACE (2 góc tương ứng) (1)
Mà góc B = góc C (vì \(\Delta\)ABC là \(\Delta\)cân) (2)
Từ (1), (2) => IBC = ICB
=> tam giác IBC là tam giác cân
a) Xét tam giác ADB va tam giac AEC ta có
AD=AE
 là góc chung
AB=AC( do ABC cân )
=> tam giác ADB= tam giác AEC (c.g.c)
=>góc AEC=góc ADB
b IBC là tam giác cân vì
ta có
góc IBC =Góc ABC-góc ABD
góc ICB=góc ACB-góc ACE
mà góc ABC=góc ACB(do ABC cân ); góc ABD=Góc ACE (hai góc tương ứng )
=> góc IBC=góc ICB
=> tam giác IBC cân
Giải:
∆ABD và ∆ACE có:
AB=AC(gt)
A góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: ABD=ACE.
Tức là B1 =B2.
b) Ta có B=C mà B1 =C1 suy ra B2 =C2.
Vậy ∆IBC cân tại I.
a,AD<AC
b,BD<AB
c,
c,AD>BD
d,AB.Vì theo a và b,ta có:
AB=AC>AD>BD=>Trong tam giác ABD,AB là cạnh lớn nhất.