Cho phương...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bất phương trình  có tập nghiệm là  với  (nhập kết quả dưới dạng số thập phân) Câu hỏi 2:Tập nghiệm của phương trình  là  {}(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";") Câu hỏi 3:Nghiệm của bất phương trình  là  với   Câu hỏi 4:Bất phương trình  có nghiệm dạng  với   Câu hỏi 5:Tập nghiệm của bất phương trình  là  với   Câu hỏi 6:Một...
Đọc tiếp

Bất phương trình ?$2^{2x^{2}-1}%3C4^{x^{2}-3x+1}$ có tập nghiệm là ?$(-\infty;a)$ với ?$a=$ 
(nhập kết quả dưới dạng số thập phân)
 
Câu hỏi 2:

Tập nghiệm của phương trình ?$log_{2}[x(x-1)]=1$ là ?$S=$ {}
(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";")
 
Câu hỏi 3:

Nghiệm của bất phương trình ?$(0,2)^{-x}%3C25^{\frac{1}{2x}}$ là 
?$x\in(-\infty;a)\cup(0;1)$ với ?$a=$ 
 
Câu hỏi 4:

Bất phương trình ?$4^{x}.3^{3}%3E3^{x}.4^{3}$ có nghiệm dạng ?$x\in(a;+\infty)$ với ?$a=$ 
 
Câu hỏi 5:

Tập nghiệm của bất phương trình ?$\frac{1}{25^{\sqrt%20{x^{2}-2x}}}%3C5^{x-2}$ là ?$(a;+\infty)$ với ?$a=$ 
 
Câu hỏi 6:

Một hình nón có góc ở đỉnh là ?$60^{0}$. Diện tích đường tròn đáy là ?$16$?$\pi$. Khi đó thể tích của khối nón là  ?$.\pi$ (đvtt)
(tính chính xác đến hai chữ số thập phân)
 
Câu hỏi 7:

Một hình nón có chiều cao và bán kính đáy đều bằng ?$3$. Một mặt phẳng qua đỉnh ?$S$ của hình nón và hợp với mặt phẳng đáy 1 góc ?$60^{0}$ thì diện tích của thiết diện là 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
 
Câu hỏi 8:

Cho hình chóp tam giác đều ?$S.%20ABC$ có ?$SA=AB=3$. Một khối nón có đỉnh ?$S$ và mặt
đáy là đường tròn ngoại tiếp tam giác ?$ABC$ có thể tích bằng ?$.\pi$
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)
 
 
Câu hỏi 9:

Bất phương trình ?$log_{2}x+log_{3}x%3E1+log_{2}x.log_{3}x$ có nghiệm dạng
?$x\in(a;3)$ với ?$a=$ 
 
Câu hỏi 10:

Số thực ?$x$ nhỏ nhất thỏa mãn bất phương trình ?$(2+\sqrt%20{3})^{x^{2}-2x+1}+(2-\sqrt%20{3})^{x^{2}-2x-1}\le%20\frac{4}{2-\sqrt%20{3}}$ là 
(tính chính xác đến haic hữ số thập phân)
2
24 tháng 1 2016

bài này trong violympic đúng ko


Bất phương trình  có tập nghiệm là  với  
(nhập kết quả dưới dạng số thập phân)

 

Câu hỏi 2:


Tập nghiệm của phương trình  là  {}
(nhập kết quả theo thứ tự tăng dần, ngăn cách nhau bởi dấu ";")

 

Câu hỏi 3:


Nghiệm của bất phương trình  là 
 với 

 

Câu hỏi 4:


Bất phương trình  có nghiệm dạng  với 

 

Câu hỏi 5:


Tập nghiệm của bất phương trình  là  với 

 

Câu hỏi 6:


Một hình nón có góc ở đỉnh là . Diện tích đường tròn đáy là . Khi đó thể tích của khối nón là   (đvtt)
(tính chính xác đến hai chữ số thập phân)

 

Câu hỏi 7:


Một hình nón có chiều cao và bán kính đáy đều bằng . Một mặt phẳng qua đỉnh  của hình nón và hợp với mặt phẳng đáy 1 góc  thì diện tích của thiết diện là 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)

 

Câu hỏi 8:


Cho hình chóp tam giác đều  có . Một khối nón có đỉnh  và mặt
đáy là đường tròn ngoại tiếp tam giác  có thể tích bằng 
(nhập kết quả dưới dạng số thập phân, làm tròn đến hàng phần trăm)

 

Câu hỏi 9:


Bất phương trình  có nghiệm dạng
 với 

 

Câu hỏi 10:


Số thực  nhỏ nhất thỏa mãn bất phương trình  là 
(tính chính xác đến haic hữ số thập phân)Câu hỏi tương tự Đọc thêm

Toán lớp 9

                

 

Câu 2:Cho tam giác ABC vuông ở A có  Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì = . Câu 3:Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm. Câu 4:Một hình chữ nhật có chu vi là 70 cm và diện tích là . Độ dài đường...
Đọc tiếp
Câu 2:
Cho tam giác ABC vuông ở A có ?$AC%3EAB.$ Với điểm M thuộc BC, ta vẽ MD và ME lần lượt song song với AC và AB. Khi DE có độ dài ngắn nhất thì ?$\widehat{AMB}$?$^o$.
 
Câu 3:
Cho tam giác ABC vuông cân tại A, AC= 4cm. Điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng  cm.
 
Câu 4:
Một hình chữ nhật có chu vi là 70 cm và diện tích là ?$300%20cm^2$. Độ dài đường chéo của hình chữ nhật đó bằng cm.
 
Câu 5:
Số trục đối xứng của một hình chữ nhật là 
 
Câu 6:
Nếu đa thức ?$3x^3+2x^2-7x+a$ chia hết cho đa thức ?$3x-1$ thì ?$a=$
 
Câu 7:
Tập hợp các giá trị của ?$x$ thỏa mãn đẳng thức ?$(x^4-2x^2-8):(x-2)=0$ bao gồm  phần tử
 
Câu 8:
Biểu thức ?$B=x^6+x^4+x^2+2^{2015}$ đạt giá trị nhỏ nhất khi ?$x=$
 
Câu 9:
Cho tam giác ABC nhọn, các đường cao AH, BK, CL cắt nhau tại I gọi D, E, F là trung điểm của BC, CA, AB và P, Q, R là trung điểm của IA, IB, IC thì số hình chữ nhật có trên hình vẽ là 
Hãy điền số thích hợp vào chỗ .... nhé !
 
Câu 10:
Tìm số nguyên dương ?$n$ sao cho giá trị của biểu thức ?$10n^2+n-10$ chia hết cho giá trị của biểu thức ?$n-1$.
Trả lời: ?$n=$ .
1
6 tháng 1 2016

bạn làm thế nào mà làm được như vậy bạn, ý mình là sao bạn có thể tạo câu hỏi như trên đấy

Câu 1:Khi phương trình có một nghiệm là thì nghiệm còn lại của phương trình là = Nhập kết quả dưới dạng số thập phân gọn nhất. Câu 2:Nghiệm của phương trình là = Câu 3:Một hình trụ có diện tích xung quanh là và thể tích là Bán kính đáy của hình trụ này là = Câu 4:Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ I đi...
Đọc tiếp

Câu 1:Khi phương trình ?$x^2-3x+m=0$ có một nghiệm là ?$x=1,25$ thì nghiệm còn lại của phương trình là ?$x$=
Nhập kết quả dưới dạng số thập phân gọn nhất.
Câu 2:Nghiệm của phương trình ?$\sqrt{x+2}%20(\sqrt{x-1}-2)=0$?$x$ =
Câu 3:Một hình trụ có diện tích xung quanh là ?$80%20\pi%20cm^2$ và thể tích là ?$160%20\pi%20cm^2.$
Bán kính đáy của hình trụ này là ?$R$= ?$cm$
Câu 4:Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ I đi làm việc khác, tổ II làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ I mất giờ sẽ xong việc.
Câu 5:Biểu thức ?$S=\sqrt{x-10}+\sqrt{14-x}$ đạt giá trị lớn nhất khi ?$x$=
Câu 6:Tổng hai nghiệm không nguyên của phương trình ?$x^4+5x^3-12x^2+5x+1=0$
Câu 7:Biết phương trình ?$x^4+ax^3+bx^2+cx+d=0$ có các nghiệm là ?$-3;%20-1;%202;%204$
Ta được ?$a+b+c+d$=
Câu 8:Cho tam giác ABC cân tại A có BC = 24cm , AC = 20cm.
Độ dài bán kính đuờng tròn tâm O nội tiếp tam giác ABC là cm.
Câu 9:Cho hàm số ?$y=%20(3%20-2\sqrt{2})x%20+\sqrt{2}-1$.Giá trị của ?$y$ khi ?$x=3+2\sqrt{2}$
( Nhập kết quả làm tròn đến chữ số thập phân thứ 2)
Câu 10:Cho hàm số ?$y=(m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6})x+17.$ Số giá trị của ?$m$ để đồ thị hàm số đi qua điểm ?$A(1;%2017)$
5
18 tháng 2 2017

Làm một câu cuối

câu 10:

\(x=1;y=17\Rightarrow17=m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6}+17\)

\(\Leftrightarrow m^2-\left(\sqrt{3}+\sqrt{2}\right)m+\sqrt{6}\) (1)

Ta có: \(\Delta=\left(\sqrt{3}+\sqrt{2}\right)^2-4\sqrt{6}=5+2\sqrt{6}-4\sqrt{6}=5-2\sqrt{6}\)

\(5-2\sqrt{6}=3-2\sqrt{3}.\sqrt{2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2>0\)

=> (1) có hai nghiệm => đáp số =2

18 tháng 2 2017

câu 1:

x=1,25 -> (1,25)2 - 3.1,25+m=0 -> m= \(\frac{35}{16}\)

ta có pt mới : x2 -3x+\(\frac{35}{16}\)=0 -> (x-\(\frac{3}{2}\))2 =\(\frac{1}{16}\) -> x=1,75

15 tháng 9 2021

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:

b) Cho a, b, c > 0. Chứng minh rằng:

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a – b|Câu 9.a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8Câu 10. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)Câu 11. Tìm các giá trị của x sao cho:a) |2x – 3| = |1 – x|b) x2 – 4x ≤ 5c) 2x(2x – 1) ≤ 2x – 1.Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0Câu 16. Tìm giá trị lớn nhất của biểu thức:

15 tháng 9 2021

\(\text{Giải thích các bước giải:}\)

undefined

20 tháng 3 2022

a)Thay m=-2 vào phương trình (1) ta được:

\(x^2+2x-2-1=0\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Leftrightarrow x^2-x+3x-3=0\)

\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)

Vậy....

b)Ta có:

\(\Delta=\left(-m\right)^2-4.1.\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Có:\(\left(m-2\right)^2\ge0\forall m\)

\(\Rightarrow\Delta\ge0\forall m\)

Vậy Phương trình (1) luôn có nghiệm \(x_1,x_2\)với mọi giá trị của m

16 tháng 12 2018

Bài 1 ( của toán lớp 10 mà )

Ta có : ( P )  đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được : 

           5 = a . 42 + b . 4 + c 

          5 = 16a     +  4b   + c 

         -c = 16a + 4b - 5 

   => c = -16a - 4b + 5             ( * )  

( P ) có đỉnh là  I(2;1)  

=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\)   ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 ) 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 ) 

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\) 

Thay a = 1 và b = -4 vào phương trình   ( * )  ta được : 

c = -16 . 1 - 4 .( -4 ) +5 = 5 

vậy ( P ) là \(y=x^2-4x+5\)

bảng biến thiên :

 

bạn tự vẽ (P) nha , quá dễ mà 

BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm 

\(\left(m^2-1\right)x+2m=5x-2v6\)

\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)

\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)

\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)

Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)

\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)

Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)

Bài 3 :

a )

\(\Delta=b^2-4ac\)

\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)

\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)

\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)

\(=16m^2-12m+36-16m^2-40m+8m+20\)

\(=-44m+56\)

phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow-44m+56\ge0\)

\(\Leftrightarrow-44m\ge-56\)

\(\Leftrightarrow m\le\frac{14}{11}\)

Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm  ( m bé hơn hoặc bằng 14/11 nha ) 

b ) x1 = x2 có nghĩa là nghiệm kép nha  ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy ) 

phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)

\(\Leftrightarrow-44m+56=0\)

\(\Leftrightarrow m==\frac{14}{11}\)

Học tốt !!!!!

                           

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)

3 tháng 11 2021

656+788767=

3 tháng 11 2021

BẰNG 789423 EM NHÉ

25 tháng 3 2017

x=6 nha bạn 

tk vafkb với mk nha mk đang âm điểm nè hu hu

25 tháng 3 2017

x=2 nhé