\(\hept{\begin{cases}m\left(m-1\right)x+m\left(m+1\right)y=m^3+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

chịu@@@@@@@@@

20 tháng 12 2017

hệ tương đương \(\hept{\begin{cases}3\left|x\right|=1+m\\\left|x\right|+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x\right|=\frac{1+m}{3}\\y=1-\left|x\right|\end{cases}\Leftrightarrow\hept{\begin{cases}\left|x\right|=\frac{1+m}{3}\\y=1-\frac{1+m}{3}\end{cases}}}}\)

Để hệ có 2 nghiệm phân biệt thì |x| > 0 \(\Leftrightarrow\frac{1+m}{3}>0\Leftrightarrow1+m>0\Leftrightarrow m>-1\)

Vậy với M> -1 thì hệ có 2 nghiệm phân biệt

24 tháng 3 2020

\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)

\(\left(2\right)\Rightarrow y=-m^2+2+mx\)

Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)

\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)

\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)

Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" <=> \(m=\frac{3}{2}\)

Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất

Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)

Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)

Ta có: (2m - 1)x + (m + 1)y = m

Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m

<=> \(\frac{18m-9}{m}-4m-4-m=0\)

<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)

=> -5m2 + 14m - 9 = 0

<=> 5m2 - 14m + 9 = 0

<=>5m2 - 5m - 9m + 9 = 0

<=> 5m(m - 1) - 9(m - 1) = 0

<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)

Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài