K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

a) ĐK: x ≥ 2

\(\sqrt{3x-6}=3\)

\(\Leftrightarrow3x-6=9\)

<=> 3x = 15

<=> x = 5

Vậy:....

b) ĐK: 5x - 16 ≥ 0

<=> 5x ≥ 16

<=> x ≥ 16/5

\(\sqrt{5x-16}=2\)

<=> 5x - 16 = 4

<=> 5x = 20

<=> x = 4

c) ĐK: \(x^2-4x+3\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

16 tháng 5 2021

bình phương hai vế ta được:

a)điều kiện của x:x≥2

3x-6=9 <=> x=5(nhận)

b)ĐK: x≥16/5

5x-16=4 <=>x=4(nhận)

c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)\(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)

ĐKXĐ: x≠3 ;x≠1

21 tháng 7 2021

a) Biểu thức có nghĩa `<=> {(x-2>=0),(x-4>=0):} <=> {(x>=2),(x>=4):} <=> x>=4`

b) Biểu thức có nghĩa `<=> {(x+1>=0),(\sqrt(x+1)\ne1):} <=> {(x>=1),(x \ne 0):} <=> x >=1`

c) Biểu thức có nghĩa `<=> x^2-4x+3 >=0 <=> (x-1)(x-3) >= 0 <=> [(x>=3),(x<=1):}`

21 tháng 7 2021

mọi người giúp em với ạ

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)

\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)

\(\Rightarrow x+y^2\geq x^2+y^3\)

\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)

\(\Rightarrow x+y\geq x^2+y^2\) (2)

Lại áp dụng BĐT AM-GM:

\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)

\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)

Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)

Dấu bằng xảy ra khi $x=y=1$

21 tháng 7 2021

a) Biểu thức có nghĩa \(\Leftrightarrow-x^5\ge0\)

\(\Leftrightarrow x^5\le0\) \(\Leftrightarrow x\le0\)

Vậy với \(x\le0\) thì biểu thức \(\sqrt{-x^5}\) có nghĩa

b) Biểu thức có nghĩa \(\Leftrightarrow-\left|x-2\right|\ge0\)

\(\Leftrightarrow\left|x-2\right|\le0\)  (1)

Vì \(\left|x-2\right|\ge0\) \(\forall x\)  (2)

Từ (1) và (2) \(\Rightarrow\left|x-2\right|=0\) \(\Leftrightarrow x-2=0\) \(\Leftrightarrow x=2\)

Vậy với \(x=2\) thì biểu thức \(\sqrt{-\left|x-2\right|}\) có nghĩa

c) \(ĐKXĐ:x\ne3\)

 Biểu thức có nghĩa \(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}\ge0\)

\(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}>0\) \(\Leftrightarrow\left(x-3\right)^2>0\) ( do \(10>0\) )

Vì \(\left(x-3\right)^2\ge0\) \(\forall x\)

\(\Rightarrow\) Để \(\left(x-3\right)^2>0\) thì \(x-3\ne0\) \(\Leftrightarrow x\ne3\)

So sánh với ĐKXĐ ta thấy \(x\ne3\) thỏa mãn

Vậy với \(x\ne3\) thì biểu thức \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\) có nghĩa 

21 tháng 7 2021

mọi người giúp em với em cảm ơn ạ

 

a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)

d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)

17 tháng 11 2021

\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)

Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)

\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)

\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)

Áp dụng bđt Cauchy - Schwarz ta có 

\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)

                         \(\le\left(x+y\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)

Lại có

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)

\(\Rightarrow x+y\le2\left(3\right)\)

Từ (1),(2),(3) => đpcm

Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh 

(Nhưng hơi dài và khó hiểu nên mình k làm ) 

Học tốt!!!!!!!!!

a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)