\(\sqrt{\dfrac{1-2x}{x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(\frac{x-2}{x^2-2x+1}\ge0\)

\(\frac{x-2}{\left(x-2\right)^2}\ge0\)

\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)

\(\Rightarrow x>2\)

hoc lop may roi đại lộc .

16 tháng 12 2016

Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có

ĐKXĐ là

\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}3-x>=0\\x>=0\\3-x< >4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le3\\x< >-1\end{matrix}\right.\Leftrightarrow0\le x\le3\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\7-2x>=0\\x-2< >7-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\le x\le\dfrac{7}{2}\\x< >3\end{matrix}\right.\)

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3

Bài 2: 

a: ĐKXĐ: 2/3x-1/5>=0

=>2/3x>=1/5

hay x>=3/10

b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)

=>2x-3>0 hoặc x+1<=0

=>x>3/2 hoặc x<=-1

c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)

16 tháng 9 2018

a) để \(y=\dfrac{x+3}{4-x}\) có nghĩa \(\Leftrightarrow4-x\ne0\Leftrightarrow x\ne4\)

b) để \(y=\dfrac{x-3}{\left(x-1\right)\left(3+2x\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\3+2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{-3}{2}\end{matrix}\right.\)

c) để \(y=\sqrt{2x+1}\) có nghĩa \(\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge\dfrac{-1}{2}\)

d) để \(y=\sqrt{x-3}+\sqrt{7-x}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\Rightarrow3\le x\le7\)

e) để \(y=\sqrt{x^2+2x+4}\) có nghĩa \(\Leftrightarrow x^2+2x+4\ge0\)

mà : \(x^2+2x+4=\left(x+1\right)^2+3\ge3>0\forall x\) \(\Rightarrow x\in R\)

g) để \(\dfrac{5}{\sqrt{x+1}}\) có nghĩa \(\Leftrightarrow x+1>0\Leftrightarrow x>-1\)

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2 

14 tháng 8 2019

a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)

Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)

14 tháng 8 2019

b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)

Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)