Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n thuộc Z
b) Vì 1/2 ko thc Z mà n thc Z => ko có gtrị nao của n thc Z để A là số nguyên
Gọi ƯCLN(14n + 3;24n + 5) = d
=> 14n + 3 ⋮ d => 12(14n + 3) = 168n + 36 ⋮ d
24n + 5 ⋮ d => 7(24n + 5) = 168n + 35 ⋮ d
=> (168n +36) - (168n + 35) ⋮ d
=> 1 ⋮ d => d = 1
Vậy \(\dfrac{14n+3}{24n+5}\) luôn là p/số tối giản với mọi n là số nguyên dương
a) Để A là phân số thì \(n-1\ne0\)
hay \(n\ne1\)
Vậy: Để A là phân số thì \(n\ne1\)
b) Để A là số nguyên thì \(4n+3⋮n-1\)
\(\Leftrightarrow4n-4+7⋮n-1\)
mà \(4n-4⋮n-1\)
nên \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
Kết hợp ĐKXĐ, ta được: \(n\in\left\{2;0;8;-6\right\}\)
Vậy: Để A là số nguyên thì \(n\in\left\{2;0;8;-6\right\}\)
[Tổng 3 số bất kì] < 0
Nếu [Tổng 28 số còn lại] >0 và lớn hơn |(tổng 3 số bất kì)| => 31 số đó dương
=> tổng của 3 số bất kì là số âm thì tổng của của 31 số đó có thể âm hoặc dương
a. Điều kiện để M là phân số là: số tận cùng của \(n\ne4;9\)
b.Điều kiênj để M là một số nguyên là:
\(5⋮n+1\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;4;-6\right\}\) ( vì \(n+1\ne0\)
a) Số nguyên n phải có điều kiện sau để M là phân số là:
\(n+1\ne0;5;-5\)
\(n\ne0\)
\(n\ne-1\)
\(n\ne4\)
\(n\ne-6\)
Như vậy, n không thuộc các số nguyên trên và n các tất cả các số nguyên còn lại.
Với điều kiện như thế, M sẽ là phân số.
b) Số nguyên n phải có điều sau để M là số nguyên là:
\(5 ⋮ n+1\) thì M sẽ là số nguyên \(\left(n\inℤ\right)\), hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
ĐCĐK | TM | TM | TM | TM |
Vậy \(n=\left\{-6;-2;0;4\right\}\)
a: ĐKXĐ: n<>3
Khi n=-2020 thì \(P=\dfrac{-2020+1}{-2020-3}=\dfrac{2019}{2023}\)
b: \(P=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)
Để P lớn nhất thì n-3=1
=>n=4
Để \(\dfrac{n}{-3}\) là phân số dương thì n<0
mà n nguyên
nên \(n\in Z^-\)