Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2(a^2 + b^2 + c^2) = 2 ( ab + bc +ca)
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac + a^2 = 0
=> ( a- b)^2 + ( b- c)^2 + ( c -a )^2 = 0
Vì ( a- b)^2>=0 (1)
( b - c)^2 >= 0 (2)
( c -a )^2 >= 0 (3)
Từ (1)(2) và (3) => ( a- b)^2 + ( b- c)^2 + ( c -a )^2 = 0 khi
a - b = 0 và b - c = 0 và c - a = 0
=> a = b và b = c và c = a
=> a= b =c
VẬy là tam giác đều ĐÁp ấn C
a^2+b^2+c^2=ab+bc+ca=>2(a^2+b^2+c^2)=2(ab+ac+ca)
2a^2+2b^2+2c^2-2ab-2ac-2bc=0.
a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2=0
(a-b)^2+(b-c)^2+(c-a)^2=0. => (a-b)^2=0 => a-b=0 => a=b
(b-c)^2=0 => b-c=0 => b=c
(c-a)^2=0 => c-a=0 =>c=a. Vậy a=b=c. Do đó tam giác đó là tam giác đều => C là đáp án đúng
Đặt độ dài 2 cạnh góc vuông của tam giác đó là a và b; độ dài cạnh huyền là c (a,b,c > 0)
Diện tích của tam giác đó là \(\frac{ab}{2}=14\)(cm2) \(\Rightarrow ab=28\Leftrightarrow2ab=56\)(1)
Áp dụng ĐL Pytago ta có: \(a^2+b^2=c^2=13^2=169\)(2)
(1) + (2) \(\Rightarrow a^2+2ab+b^2=56+169=225\Leftrightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a+b=\sqrt{225}=15\)(cm). Vậy ...
gọi a và b lần lượt là 2 cạnh góc vuông. ta có hệ pt\(\hept{\begin{cases}a.b=150\cdot2=300\\a^2+b^2=25^2\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{300}{b}\\\left(\frac{300}{b}\right)^2+b^2=25^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{300}{b}\\b^4-25^2b^2+300^2=0\left(1\right)\end{cases}}}\)
Từ pt (1)=>\(\orbr{\begin{cases}b^2=400\\b^2=225\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=20\Rightarrow a=15\\b=15\Rightarrow a=20\end{cases}}\)( mình không lấy số âm vì đây là độ dài hình học)
Chu vi tam giác 15+20+25=50 cm
Chọn B