K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

 Chọn A.

Phương trình hoành độ giao điểm của hai đồ thị hàm số y = ex và trục y = 1 là: ex = 1 ⇔ x = 0

Do đó:

1 tháng 4 2017

a) Diện tích hình phẳng cần tìm là:

S=2∫−1(x2+1)dx=(x33+x)∣∣2−1=6

b) Diện tích hình phẳng cần tìm là:

S=e∫1e| lnx |dx=e∫1e|lnx|dx+e∫1|lnx|dx=−1∫1elnxdx+e∫1lnxdxS=∫1ee|ln⁡x|dx=∫1ee|ln⁡x|dx+∫1e|ln⁡x|dx=−∫1e1ln⁡xdx+∫1eln⁡xdx

Mặt khác:

∫lnxdx=xlnx−∫xdlnx=xlnx−∫dx=xlnx−x+C∫ln⁡xdx=xln⁡x−∫xdln⁡x=xln⁡x−∫dx=xln⁡x−x+C

Do đó:

S=−1∫1elnxdx+e∫1lnxdx=1e∫1lnxdx+e∫1xdx=(xlnx−x)∣∣∣1e1+(xlnx−x)∣∣e1=2(1- \(\dfrac{1}{e}\))

Khó quá, làm mà điên não



24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

Nguyên hàm, tích phân và ứng dụng

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

16 tháng 11 2016

Trên [\(\frac{1}{10}\);1] thì |logx|= -logx

trên (1;10] thì |logx|=logx

vậy ta có: S=\(\int\limits^{10}_{0,1}\left|logx\right|dx=-\int\limits^1_{0,1}logx.dx+\int\limits^{10}_1logx.dx\)

S=\(\left(\frac{x}{ln10}-x.logx\right)|^1_{0,1}\) + \(\left(xlogx-\frac{x}{ln10}\right)|^{10}_1\) =...

27 tháng 10 2016

ai giúp mình với

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\) là 2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6 3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz) 4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\)...
Đọc tiếp

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\)

2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6

3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz)

4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) :2x+2y-z+9=0 điểm A(1;2;-3). diểm đối xứng của a qua mặt phẳng \(\alpha\)

5 khẳng định nào sau đây là sai?

A\(\int\) \(f^,\)(x)dx=F(x)+C B \(\int\) k.f(x)dx=k.\(\int\) f(x)dx C \(\int\)f(x)dx=F(x)+C D\(\int\)[f(x)-g(x)]dx=\(\int\)f(x)dx-\(\int\)g(x)dx

6 gọi z1,z2,z3,z4 là bốn nghiệm của pt z^4-4z^3+7z^2-16z+12=0. tính z1^2+z2^2+z3^2+z4^2

7 trong khong gian oxyz, cho mặ phẳng (p):x+3y-z+9=0 và đương thẳng d có phương trình\(\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-3}\) . tìm tọa độ giao điểm I của mp (P) va đường thẳng d

8 tính tích phân I=\(\int_{\frac{1}{e}}^e\) \(\frac{dx}{x}\)

9 trong không gian với hệ trục tọa độ oxyz, cho điểm A(1;-1-2) và đương thẳng d \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{2}\) . Phương trình mặt phẳng (P) qua điểm A và chứa đường thẳng d là

10 tính thể tích khối tròn xoay khi quay hình phẳng (D) :y=x^2-dx+4,y=0,x=0 qanh trục ox

11 cho F(x)=x^2 là một nguyên hàm của hàm số f(x)e^2x. tìm nguyên hàm của hàm số f phẩy(x)e^2x

12 diện tích hình phẳng giới hạn bởi các đồ thị ham số y=(e+1)x và y=(1+e^x) là

13 trong không gian với hệ tọa độ (oxyz) cho A(1;2;-3) hính chiếu vuông góc của điểm A trên trục ox là

14 trong không gian với hệ trưc tọa độ oxyz, cho mp(P):2x+y-2z-1=0 và đường thẳng d:\(\frac{x-2}{1}=\frac{y}{-2}=\frac{z+3}{3}\) . pt mp chứa d và vuông góc với(P) là

15 diện tích hình phẳng giới hạn bởi hai đường thẳng x+0,x=\(\pi\) và đô thị của hai hàm số y=cosx,y=sinx là

6
NV
12 tháng 5 2020

14.

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt

Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp

Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)

(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt

Phương trình (Q):

\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)

\(\Leftrightarrow x+8y+5z+13=0\)

15.

Phương trình hoành độ giao điểm:

\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)

\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

NV
12 tháng 5 2020

10.

Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao

11.

Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)

\(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)

12.

Đúng là \(y=\left(e+1\right)x\)\(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu

13.

Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)

1 tháng 4 2017

a)

Ta có:

∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos⁡2xsin2xdx=12∫0π2cos⁡2x(1−cos⁡2x)dx=12∫0π2[cos⁡2x−1+cos⁡4x2]dx=14∫0π2(2cos⁡2x−cos⁡4x−1)dx=14[sin⁡2x−sin⁡4x4−x]0π2=−14.π2=−π8

b)

Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.

Ta tách thành tổng của hai tích phân:

∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln⁡2+2−xln⁡2)|−10+(2xln⁡2+2−xln⁡2)|01=1ln⁡2

c)

∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln⁡|x|−6x]|12=(2+12+11ln⁡2−3)−(12+6−6)=212+11ln⁡2

d)

∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln⁡|x−3|−ln⁡|x+1|]|02=14[1−ln⁡2−ln⁡3]=14(1−ln⁡6)

e)

∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin⁡2x)dx=[x−cos⁡2x2]|0π2=π2+1

g)

I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsin⁡x+sin2x)dx=[x33]|0π+2∫0πxsin⁡xdx+12∫0π(1−cos⁡2x)dx

Tính :J=∫π0xsinxdxJ=∫0πxsin⁡xdx

Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x

Suy ra:

J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π

Do đó:

I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6