Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Δ P = Δ A Δ t = 480 kWh 24 h = 20 ( kW ) ⇒ H = P - Δ P P = 200 - 20 200 = 90 %
Hao phí truyền tải điện: \(P_{hp}=10\%.P= 0,1.P=20kW=20000W\)
Ta có: \(P_{hp}=I^2.R=I^2.200=20000\Rightarrow I = 10A\)
Chọn A.
Lời giải:
Vì truyền tải điện năng cần $2$ dây dẫn nên: \(R=\rho\frac{2l}{S}=3\left(\Omega\right)\)
Công suất hao phí: \(\Delta P=I^2R=\left(\frac{P}{U.\cos\varphi}\right)^2R=\frac{250000}{27}W\)
Suy ra hiệu suất truyền tải là \(H=\frac{P-\Delta P}{P}=98,15\%\)
Xin lỗi mình tính nhầm, vẫn công thức như bài giải dưới, kết quả là $94%$
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
Đáp án D
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Đáp án C
Sử dụng lí thuyết về truyền tải điện năng
Cách giải: Công suất hao phí ∆ P = ∆ A t = 480 24 = 20 k W
Hiệu suất của quá trình truyền tải H = 1 - ∆ P P = 1 - 20 200 = 0 , 9 ( 90 % )