Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: B đối xứng A qua trục tung Oy
=>\(\left\{{}\begin{matrix}x_B=-x_A=-2\\y_B=y_A=1\end{matrix}\right.\)
Vậy: B(-2;1)
b: C đối xứng A qua trục Ox
=>\(\left\{{}\begin{matrix}x_C=x_A=2\\y_C=-y_A=-1\end{matrix}\right.\)
Vậy: C(2;-1)
c: D đối xứng A qua O
=>O là trung điểm của AD
=>\(\left\{{}\begin{matrix}x_A+x_D=0\\y_A+y_D=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-x_A=-2\\y_D=-y_A=-1\end{matrix}\right.\)
Vậy: D(-2;-1)
d: (d): y=2x-1
=>(d): 2x-y-1=0
E đối xứng A qua (d)
=>(d) là đường trung trực của AD
Gọi (d2): ax+by+c=0 là phương trình đường thẳng AD
(d) là trung trực của AD
=>(d) vuông góc (d2) tại trung điểm của AD(1) và (d2) đi qua A(2;1)
(d): 2x-y-1=0
=>(d2): x+2y+c=0
Thay x=2 và y=1 vào (d2), ta được:
\(c+2+2\cdot1=0\)
=>c=-4
=>(d2): x+2y-4=0
Tọa độ giao điểm F của (d) với (d2) là:
\(\left\{{}\begin{matrix}x+2y-4=0\\2x-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=8\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=7\\x+2y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{7}{5}\\x=4-2y=4-\dfrac{14}{5}=\dfrac{6}{5}\end{matrix}\right.\)
(1) suy ra F là trung điểm của AE
=>\(\left\{{}\begin{matrix}\dfrac{6}{5}=\dfrac{x_A+x_E}{2}=\dfrac{2+x_E}{2}\\\dfrac{7}{5}=\dfrac{y_A+y_E}{2}=\dfrac{y_E+1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E+2=\dfrac{12}{5}\\y_E+1=\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow E\left(\dfrac{2}{5};\dfrac{9}{5}\right)\)
Lời giải:
a)
b)
Gọi đường thẳng đi qua 2 điểm $A,B$ có dạng $(\Delta): y=ax+b$
Vì $A,B\in (\Delta)$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 5=-2a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-1\\ b=3\end{matrix}\right.\)
Vậy PTĐT cần tìm có dạng $y=-x+3$
c) PT hoành độ giao điểm:
$2x+5=-x+3$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$
$y=-x+3=\frac{2}{3}+3=\frac{11}{3}$
Vậy tọa độ giao điểm của 2 ĐT là $(\frac{-2}{3}; \frac{11}{3})$
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
vì dths y=ax+b // với dt (d) => a=2
mà đths y=ax+b đi qua điểm B =>2=2.(-1)+b =>b=4
b: Vì (d)//y=3x+2 nên a=3
Vậy: (d): y=3x+b
Thay x=1 và y=2 vào (d), ta được:
b+3=2
hay b=-1
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+2x-3=0\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-3;1\right\}\\y\in\left\{9;1\right\}\end{matrix}\right.\)
a) Ta có: \(2x_A-7=2.0-7=-7=y_A\)
=> A(0;-7) thuộc đường thẳng (d)
\(2x_B-7=2\left(-1\right)-7=-2-7=-9\ne2=y_B\)
=> B(-1;2) không thuộcđường thẳng (d)
\(2x_C-7=2.\dfrac{1}{2}-7=1-7=-6=y_C\)
=> C(1/2;-6) thuộc đườngthẳng (d)
b) Đồ thị hàm số y=ax+b song song với đường thẳng (d):y=2x-7
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne-7\end{matrix}\right.\)
ta được hàm số y=2x+b
B(-1;2) thuộc đồ thị hàm số y=2x+b
=>yB=2xB+b
=>2 = 2.(-1)+b
=> b =4 (TMĐK)
Vậy a=2;b=4
a, Vì đường thẳng (d) // với đường thẳng y=-4x
=>a=-4 và b\(\ne\) 0
và vì (d) cắt trục hoành tại điểm có hoành độ=-1 nên x=-1 và y=0. Thế vào, ta được
0=-4*(-1)+b
=> b=-4
vậy, hàm số cần tìm là y=-4x-4
b, vì đường thẳng d vuông góc với đường thẳng y=-5x+1 nên
a*(-5)=-1
=> a=1/5
và vì d đi qua điểm A(5;2) nên x=5;y=2. thế vào ta được
2=(1/5)*5+b
=> b= 1
vậy hàm số cần tìm là y=1/5x+1
c, vì d đi qua 2 điểm A(1;2)và B(-2;-7) nên ta sẽ có 2 phương trình như sau
2=a*1+b( thế tọa độ của A vào)
-7=-2*a+b (thế tòa độ B vào)
giải hệ pt ra ta được a=3; b=-1
vậy hàm số cần tìm là y=3x-1
a: Điểmmà (d) luôn đi qua có tọa độ là:
x+1=0 và y=5
=>x=-1 và y=5
PTHĐGĐ là:
1/2x^2-mx-m-5=0
=>x^2-2mx-2m-10=0
\(\text{Δ}=\left(-2m\right)^2-4\left(-2m-10\right)\)
\(=4m^2+8m+40=4m^2+8m+4+36=\left(2m+2\right)^2+36>0\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: \(\left\{{}\begin{matrix}x_A+x_B=-2\\y_A+y_B=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_B=-2\\\dfrac{1}{2}\left(x_A^2+x_B^2\right)=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\x_1^2+x_2^2=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\\left(x_1+x_2\right)^2-2x_1x_2=20\end{matrix}\right.\)
=>x1+x2=-2 và 2x1x2=4-20=-16
=>x1+x2=-2 và x1x2=-8
=>x1,x2 là nghiệm của pt:
x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=-4 hoặc x=2
=>A(-4;8); B(2;2)