Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x}{6}=\dfrac{3y}{15}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).3=-3\\y=\left(-1\right).5=-5\\z=\left(-1\right).7=-7\end{matrix}\right.\)
2) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{19}.8=-\dfrac{224}{19}\\y=-\dfrac{28}{19}.12=-\dfrac{336}{19}\\z=-\dfrac{28}{19}.15=-\dfrac{420}{19}\end{matrix}\right.\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{3\cdot2+5\cdot3-7}=\dfrac{-14}{14}=-1\\ \Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
b, \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{224}{19}\\y=-\dfrac{336}{19}\\z=-\dfrac{420}{19}\end{matrix}\right.\)
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\) ⇒ \(\dfrac{y}{12}=\dfrac{z}{15}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)\(=\dfrac{x+y-z}{8+12-15}\) \(=\dfrac{10}{5}=2\)
⇒ \(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\) => \(\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt
Đặt \(\dfrac{x}{-3}=\dfrac{y}{-8}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=8k\end{matrix}\right.\)
Ta có: \(x^2-y^2=-\dfrac{44}{5}\)
\(\Leftrightarrow9k^2-64k^2=-\dfrac{44}{5}\)
\(\Leftrightarrow k^2=\dfrac{4}{25}\)
Trường hợp 1: \(k=\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=\dfrac{6}{5}\\y=8k=\dfrac{16}{5}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=\dfrac{-6}{5}\\y=8k=\dfrac{-16}{5}\end{matrix}\right.\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
`=>x=5k,y=3k`
Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)
\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)