Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(P=\dfrac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}\)
\(=\dfrac{x^8\left(x^2-1\right)+x^4\left(x^2-1\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^8+x^4+1}{x^2+1}\)
b)
\(Q=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{45}+x^{35}+...+x^5\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^5\left(x^{40}+x^{30}+...+1\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{40}+x^{30}+...+1\right)\left(x^5+1\right)}\)
\(=\dfrac{1}{\left(x^5+1\right)}\)
cái câu b dòng cuối mẫu số đóng mở ngoặc chi cho mệt ei =.=
Đặt biểu thức là A, ta có:
\(A=\frac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5=\frac{x^{45}+x^{35}+x^{25}+x^{15}+x^5}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+A=\frac{x^{45}+x^{40}+x^{35}+x^{25}+x^{15}+x^5+x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+1=1\)
\(\Rightarrow A=\frac{1}{x^5+1}\)
\(\dfrac{x-55}{45}+\dfrac{x-30}{35}+\dfrac{x-25}{25}+\dfrac{x-40}{15}=10\)
\(< =>\dfrac{x-55}{45}+\dfrac{x-30}{35}+\dfrac{x-25}{25}+\dfrac{x-40}{15}-10=0\)
\(< =>\dfrac{x-55}{45}-1+\dfrac{x-30}{35}-2+\dfrac{x-25}{25}-3+\dfrac{x-40}{15}-4=0\)
\(< =>\dfrac{x-100}{45}+\dfrac{x-100}{35}+\dfrac{x-100}{25}+\dfrac{x-100}{15}=0\)
\(< =>\left(x-100\right)\left(\dfrac{1}{45}+\dfrac{1}{35}+\dfrac{1}{25}+\dfrac{1}{15}\right)=0\)
\(< =>x-100=0\left(\dfrac{1}{45}+\dfrac{1}{35}+\dfrac{1}{25}+\dfrac{1}{15}\ne0\right)\)
\(< =>x=100\)
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
a) 2x (x+3) - 2 (x+2)2
= 2x2+6 - 2 ( x2+4x+4)
= 2x2+6 - 2x2 - 8x - 8
= -8x - 2
b) 2(x+2)(x-2) -(2x-3)(x-1)
= 2(x2-4)-2x2+2x+ 3x - 3
= 2x2 - 8 - 2x2+2x+ 3x - 3
= 5x - 11
c) (x+1)2 -(2x2+6)-(x+1)(x-1)
= x2 +2x+1 - 2x2 -6 - x2+1
= -2x2 + 2x
Lời giải:
PT $\Leftrightarrow \frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1$
$\Leftrightarrow \frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}$
$\Leftrightarrow (x+100)(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60})=0$
Dễ thấy $\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}<0$
$\Rightarrow x+100=0$
$\Leftrightarrow x=-100$ (tm)
d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7
\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>x^2+11x+28=54
=>x^2+11x-26=0
=>(x+13)(x-2)=0
=>x=2 hoặc x=-13
e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)
=>x-258=0
=>x=258