Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x - 24 = y
=> x - y = 24
Lại có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
( theo tính chất của dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{7}=6\) => x = 42
\(\dfrac{y}{3}=6\) => y = 18
Vậy x = 42, y = 18
Ta có :\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-x}{7-5}=\dfrac{48}{2}=24\)
( theo tính chất dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{5}=24\) => x = 120
\(\dfrac{y}{7}=24\) => y = 168
\(\dfrac{z}{2}=24\) => z = 48
Vậy x = 120, y = 168, z = 48
a, Ta có:
\(x-24=y\\ x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)
+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)
Vậy \(x=42;y=18\)
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)
+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)
+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)
+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)
Vậy \(x=48;y=67,2;z=19,2\)
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
1/ a, Ta có :
\(x-2y+3z=35\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)
Vậy ..
1,a/ Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)
Vậy ...
b, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)
Vậy ...
2/a, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)
Vậy ...
b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)
Vậy ..
Bài Giải:
Bài 1:
a) Theo đề bài, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
Suy ra: x = 2 . (-2) =-4
y = 5 . (-2) =-10
Vậy: x = -4 và y = -10
Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!
Tick cho Phong nhé:>
Yêu nhiều>3
#Phong_419
Bài 1:
a) \(\dfrac{x}{15}=\dfrac{-2}{3,5}\)\(\Rightarrow x=\dfrac{15\cdot\left(-2\right)}{3,5}=-\dfrac{60}{7}\)
b) \(\dfrac{16}{x}=\dfrac{x}{25}\)\(\Rightarrow x^2=16\cdot25\Rightarrow x^2=400\Rightarrow x=\pm20\)
c) \(\dfrac{0,5}{0,7}=\dfrac{-0,1}{5x}\)\(\Rightarrow5x=\dfrac{\left(-0,1\right)\cdot0,7}{0,5}=-\dfrac{7}{50}\Rightarrow x=\dfrac{-\dfrac{7}{50}}{5}=-0,028\)
Bài 3:
a) Theo đề, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}\) và \(x+y=60\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=50\)
b) Theo đề ta có:
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=-5\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{-5}{-2}=2,5\)
\(\Rightarrow\dfrac{x}{3}=2,5\Rightarrow x=7,5\)
\(\Rightarrow\dfrac{y}{5}=2,5\Rightarrow y=12,5\)
c) Theo đề ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(y+z-x=8\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{y+z-x}{4+6-2}=\dfrac{8}{8}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\)
\(\Rightarrow\dfrac{z}{6}=1\Rightarrow z=6\)
d) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\) và \(x+y-z=50\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{x+y-z}{9+12-16}=\dfrac{50}{5}=10\)
\(\Rightarrow\dfrac{x}{9}=10\Rightarrow x=90\)
\(\Rightarrow\dfrac{y}{12}=10\Rightarrow y=120\)
\(\Rightarrow\dfrac{z}{16}=10\Rightarrow z=160\)
e) Theo đề ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)và \(2x+3y+5z=86\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot3+3\cdot4+5\cdot5}=\dfrac{86}{43}=2\)
\(\Rightarrow\dfrac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\dfrac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\dfrac{z}{5}=2\Rightarrow z=10\)
f) Theo đề ta có
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)và \(x+y+z=-28\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{-28}{14}=-2\)
\(\Rightarrow\dfrac{x}{2}=-2\Rightarrow x=-4\)
\(\Rightarrow\dfrac{y}{5}=-2\Rightarrow y=-10\)
\(\Rightarrow\dfrac{z}{7}=-2\Rightarrow z=-14\)
g) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\) và \(2x^2+y^2+3z^2=316\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{2x^2+y^2+3z^2}{2\cdot3^2+7^2+3\cdot2^2}=\dfrac{316}{79}=4\)
\(\Rightarrow\dfrac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\dfrac{y}{7}=4\Rightarrow y=28\)
\(\Rightarrow\dfrac{z}{2}=4\Rightarrow z=8\)
Các bạn giúp mình giải theo hai cách nha! Mình đang cần gấp