Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải bpt sau:
\(\dfrac{x+3}{2011}\)+\(\dfrac{x+2}{2012}\)+\(\dfrac{x+1}{2013}\)≥\(\dfrac{3x}{2014}\)
\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)
\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)
\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)
\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)
Mà \(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )
Nên \(x+2014\ge0\)
\(\Leftrightarrow x\ge-2014\)
Vậy
b) \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{1}{18}\\< =>\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ < =>\dfrac{1}{x+1}-\dfrac{1}{x+5}=\dfrac{1}{18}\\ quyđồngmẫuvàkhửmẫu\\ x^{2^{ }}+6x-27=0\\ giảipttìmđược:x=3;x=-9\)
a) \(\frac{x-2015}{1}+\frac{x-2014}{2}+\frac{x-2013}{3}+...+\frac{x-1}{2015}+\frac{x}{2016}=0\\ \Leftrightarrow\frac{x-2015}{1}-1+\frac{x-2014}{2}-1+...+\frac{x-1}{2015}-1+\frac{x}{2016}-1=-2016\)
\(\Leftrightarrow\frac{\left(x-2016\right).1}{1}+\frac{\left(x-2016\right).1}{2}+\frac{\left(x-2016\right).1}{3}+...+\frac{\left(x-2016\right).1}{2015}+\frac{\left(x-2016\right).1}{2016}=-2016\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=-2016\)
tới đây mình chịu. mình nghĩ là phương trình bạn cho là bằng 2016 chứ, như thế giải mới được, còn như này thì mình bó tay
b)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{8}\\ \Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\\ \Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x+12-32=0\\ \Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-10\\x=2\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-10;2}
\(\dfrac{1-x}{2013}=1+\dfrac{2-x}{2012}-\dfrac{x}{2014}\)
\(\Leftrightarrow1+\dfrac{1-x}{2013}=1+\dfrac{2-x}{2013}+1-\dfrac{x}{2014}\)
\(\Leftrightarrow\dfrac{2013+1-x}{2013}=\dfrac{2012+2-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}=\dfrac{2014-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}-\dfrac{2014-x}{2012}-\dfrac{2014-x}{2014}=0\)
\(\Leftrightarrow\left(2014-x\right)\left(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow2014-x=0\) ( Vì \(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2014}\ne0\) )
\(\Leftrightarrow x=2014\)
Vậy pt có nghiệm x = 2014
\(\dfrac{1-x}{2013}=1+\dfrac{2-x}{2012}-\dfrac{x}{2014}\)
\(\Leftrightarrow\dfrac{1-x}{2013}=\dfrac{2-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{1-x}{2013}+1=\dfrac{2-x}{2012}+1+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}=\dfrac{2014-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\left(2014-x\right)\left(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
\(\Leftrightarrow2014-x>0\) (Vì \(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))
\(\Leftrightarrow x=2014\)
Vậy pt có tập nghiệm là x = 2014
a)\(\dfrac{x-2}{3}-\dfrac{x-3}{4}=1\Leftrightarrow\dfrac{4x-8-3x+9}{12}=1\) ⇔x+1=12⇔x=11 Vậy phương trình đã cho có tập nghiệm S=\(\left\{11\right\}\) b)\(\dfrac{x-1}{2015}+\dfrac{x-2}{2014}+\dfrac{x-5}{2011}+\dfrac{x+1}{2017}=4\) \(\Leftrightarrow\left(\dfrac{x-1}{2015}-1\right)+\left(\dfrac{x-2}{2014}-1\right)+\left(\dfrac{x-5}{2011}-1\right)+\left(\dfrac{x+1}{2017}-1\right)=4-4\) \(\Leftrightarrow\dfrac{x-1-2015}{2015}+\dfrac{x-2-2014}{2014}+\dfrac{x-5-2011}{2011}+\dfrac{x+1-2017}{2017}=0\) \(\Leftrightarrow\dfrac{x-2016}{2015}+\dfrac{x-2016}{2014}+\dfrac{x-2016}{2011}+\dfrac{x-2016}{2017}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x-2016=0\) (vì \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2011}+\dfrac{1}{2017}\ne0\) )
⇔x=2016
Vậy phương trình đã cho có tập nghiệm S=\(\left\{2016\right\}\)
c)3(x-1)-5(x+4)+6(2-x)=7 ⇔3x-3-5x-20+12-6x=7⇔3x-5x-6x=7-12+20+3⇔-8x=18⇔\(x=\dfrac{-9}{4}\)
Vậy phương trình đã cho có tập nghiệm S=\(\left\{\dfrac{-9}{4}\right\}\)
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
<=>\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
<=>\(\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
<=>\(\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
vì 1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 khác 0
=>x-2014=0<=>x=2014
bạn hiểu chứ?
Xuyên Cúc: -1 tại vì còn phải tùy bài, mk phải làm thế nào để tử giống nhau, thì có trường hợp + có trường hợp -, cái đấy còn tùy
còn 1/2013...+... khác 0 vì chắc chắn nó sẽ khác 0, cái dãy số đấy k có chuyện bằng 0 đc , tớ cũng chả biết giải thích thế nào nữa == bt nếu làm ra như vầy : (x+1)(1/2+...+..) thì x+1=0 còn cái vế còn lại sẽ khác 0, hầu như là thế chứ tớ chưa thấy trường hợp nào mà vế x+1 khác 0 còn vế kia bằng 0 cả
\(a.\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\\ \Leftrightarrow\dfrac{27x-18}{45}+\dfrac{5x-5}{45}=\dfrac{42x-9}{45}-\dfrac{10x+5}{45}\\ \Rightarrow27x-18+5x-5=42x-9-10x-5\\ \Leftrightarrow32x-23=32x-14\\ \Leftrightarrow0x=9\\ \Rightarrow Phươngtrìnhvônghiệm\\ \Rightarrow S=\phi\)
\(b.\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\\ \Leftrightarrow\dfrac{3x-9}{6}-\dfrac{4-2x}{6}-\dfrac{6}{6}=\dfrac{x+5}{6}\\ \Rightarrow3x-9-4+2x-6=x+5\\ \Leftrightarrow5x-19=x+5\\ \Leftrightarrow4x=24\\ \Rightarrow x=6\\ \Rightarrow S=\left\{6\right\}\)
\(c.\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\\ \Leftrightarrow\dfrac{x+5}{2010}+1+\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1+\dfrac{x+2}{2013}+1=-4+4\\ \Rightarrow\dfrac{2015+x}{2010}+\dfrac{2015+x}{2011}+\dfrac{2015+x}{2012}+\dfrac{2015+x}{2013}=0\\ \Leftrightarrow\left(2015+x\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)
Do \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}>0\)
nên \(2015+x=0\Rightarrow x=-2015\)
Câu d tương tự...thêm rồi chuyển vế sang :v
\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)
\(\Leftrightarrow\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1=\dfrac{x-1}{1008}-2+\dfrac{x}{2017}-1\) \(\Leftrightarrow\dfrac{x-3-2014}{2014}+\dfrac{x-2-2015}{2015}=\dfrac{x-1-2016}{1008}-\dfrac{x-2017}{2017}\) \(\Leftrightarrow\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{1008}+\dfrac{x-2017}{2017}\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\right)=0\)
Vì: \(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{1008}-\dfrac{1}{2017}\ne0\)
Suy ra: x -2017 = 0
=> x = 2017
\(\dfrac{x-3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-1}{1008}+\dfrac{x}{2017}-1\)
⇔ \(\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1=\dfrac{x-1}{2008}-2+\dfrac{x}{2017}-1\)
⇔\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2008}+\dfrac{x-2017}{2017}\)
⇔\(\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2008}-\dfrac{x-2017}{2017}=0\)
⇔\(\left(x-2017\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2008}-\dfrac{1}{2017}\right)=0\)
⇔x-2017=0
⇔x=2017
vậy phương trình có tập nghiệm là S={2017}
Giải:
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow2+\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=2+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow1+\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}=1+\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}\)
\(\Leftrightarrow\left(1+\dfrac{x+1}{2015}\right)+\left(1+\dfrac{x+2}{2014}\right)=\left(1+\dfrac{x+3}{2013}\right)+\left(1+\dfrac{x+4}{2012}\right)\)
\(\Leftrightarrow\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}=\dfrac{x+3+2013}{2013}+\dfrac{x+4+2012}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
Nên \(x+2016=0\)
\(\Leftrightarrow x=0-2016\)
\(\Leftrightarrow x=-2016\)
Vậy ...
Chúc bạn học tốt!
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
do \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\Rightarrow x=2016\)
váy x=2016
\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)
\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)
\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)
\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)