Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tuA=1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{2010}{119}=2010\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)\(mauA=1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{2011}{119}=2011\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)có \(\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\ne0=>A=\dfrac{2010}{2011}\)
Ta có:
\(A=\dfrac{1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{1003}{119}-\dfrac{1007}{119}}{1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{1003}{119}-\dfrac{1007}{119}}\)
\(A=\dfrac{2010+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{2010}{119}}{2011+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{2011}{119}}\)
\(A=\dfrac{2010.\left(\dfrac{1}{1}+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)}{2013.\left(\dfrac{1}{1}+\dfrac{1}{113}+\dfrac{1}{117}+\dfrac{1}{119}\right)}\)
\(\Rightarrow A=\dfrac{2010}{2013}\)
a,Vế trái:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)
b,chưa có câu trả lời, sorry nha
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)
Vậy x=-2015